

Lecture Notes in Computer Science 4039
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Maurizio Morisio (Ed.)

Reuse of
Off-the-Shelf
Components

9th International Conference on Software Reuse,
ICSR 2006
Turin, Italy, June 12-15, 2006
Proceedings

13

Volume Editor

Maurizio Morisio
Politecnico di Torino, Dip. Automatica e Informatica
Corso Duca degli Abruzzi 24, 10129 Torino, Italy
E-mail: maurizio.morisio@polito.it

Library of Congress Control Number: 2006926266

CR Subject Classification (1998): D.2, K.6, D.1, J.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-34606-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34606-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11763864 06/3142 5 4 3 2 1 0

Preface

Software reuse as an umbrella concept has been around for several decades. Over
time, new techniques and approaches have been proposed to implement the concept,
from libraries of reusable assets to product lines, to generative methods.

These latter techniques are mostly used in intra-organizational reuse, and require
considerable formal knowledge over the evolution of technology and required
functionality in a domain over several years.

On the other end of the spectrum, extra-organizational reuse is based on reuse of
off-the-shelf (OTS) software (both open and closed source, acquired for free or for a
fee). Here, a limited investment and immediate availability of the assets have widely
spread the approach. On the other hand, the reusing organization has no control on the
evolution of the functionality and assumptions of the asset. Even when the assets are
open source, they are seldom modified.

The theme for this ninth meeting is the reuse of off-the-shelf (OTS) components
and related problems:

 * Documentation of OTS components
 * Processes to identify and select OTS components
 * Integration and evolution problems
 * Reliability and security of OTS components and legal issues
 * Interaction with the developer community or with the vendor

The proceedings you are holding cover these issues as well as development and use

of product lines, variability modeling, aspect-based development, composition of
components and services.

June 2006 Maurizio Morisio

Organization

Organizing Committee
General: Giancarlo Succi, Free University Bolzano/Bozen
Program: Maurizio Morisio, Politecnico di Torino

Workshops
Peter Knauber, Mannheim University of Applied Sciences, Germany

Tutorials
Birgit Geppert, Avaya Labs, USA

Steering Committee
Ted Biggerstaff, SoftwareGenerators.com
John Favaro, Consulenza Informatica
Bill Frakes, Virginia Tech
Ernesto Guerrieri, GTECH Corporation

Program Committee
Sidney Bailin, Knowledge Evolution
Len Bass, SEI
Ted Biggerstaff, SoftwareGenerators.com
Cornelia Boldyreff, University of Lincoln
Jan Bosch, Nokia
Christian Bunse, Fraunhofer IESE
Gerardo Canfora, Universita' del Sannio
Andrea Capiluppi, University of Lincoln
Paul Clements, SEI
Shalom Cohen, SEI
Reidar Conradi, NTNU Trondheim
Krzysztof Czarnecki, University of Waterloo
Ernesto Damiani, Università di Milano
Hakan Erdogmus, NRC Canada
Michel Ezran, Renault
Paolo Falcarin, Politecnico di Torino
John Favaro, Consulenza Informatica
Bill Frakes, Virginia Tech
Cristina Gacek, University of Newcastle upon Tyne
Birgit Geppert, Avaya
Hassan Gomaa, George Mason University
Ernesto Guerrieri, GTECH Corporation
Stan Jarzabek, National University of Singapore
Merijn de Jonge, Philips
Kyo Kang, Postech
Peter Knauber, Mannheim University of Applied Sciences

Organization

VIII

Charles Krueger, BigLever Inc.
Patricia Lago, Vrije Universiteit Amsterdam
Filippo Lanubile, Universita' di Bari
Juan Llorens, Universidad Carlos III Madrid
Mike Mannion, Glasgow Caledonian University
Michele Marchesi, University of Cagliari
Ali Mili, New Jersey Institute of Technology
Roland Mittermeir, University of Klagenfurt
Juergen Muench, Fraunhofer IESE
Markku Oivo, University of Oulu
Rob van Ommering, Philips
Witold Pedrycz, University of Alberta
Jeff Poulin, LockheedMartin
Wolfgang Pree, University of Salzburg
Rubin Prieto-Diaz, James Madison University
Stephen Rank, Lincoln University
Frank Roessler, Avaya
William Scherlis, Carnegie Mellon
Klaus Schmid, University of Hildesheim
Alberto Sillitti, Free University of Bolzano/Bozen
Ioannis Stamelos, Aristotle University of Thessaloniki
Marco Torchiano, Politecnico di Torino
Colin Tully, Middlesex University
Claudia Werner, University of Rio de Janeiro
Claes Wohlin, Blekinge Institute of Technology

Sponsors

Compagnia di San Paolo
Fondazione CRT
ICTeam
ISASE
Politecnico di Torino

Table of Contents

COTS Selection, Integration

A Goal-Oriented Strategy for Supporting Commercial Off-the-Shelf
Components Selection

Claudia Ayala, Xavier Franch . 1

A State-of-the-Practice Survey of Off-the-Shelf Component-Based
Development Processes

Jingyue Li, Marco Torchiano, Reidar Conradi,
Odd Petter N. Slyngstad, Christian Bunse . 16

Automating Integration of Heterogeneous COTS Components
Wenpin Jiao, Hong Mei . 29

Product Lines, Domain Analysis, Variability

The Domain Analysis Concept Revisited: A Practical Approach
Eduardo Santana de Almeida,
Jorge Cláudio Cordeiro Pires Mascena,
Ana Paula Carvalho Cavalcanti, Alexandre Alvaro,
Vinicius Cardoso Garcia, Silvio Romero de Lemos Meira,
Daniel Lucrédio . 43

Feature Driven Dynamic Customization of Software Product Lines
Hassan Gomaa, Mazen Saleh . 58

Inter-organisational Approach in Rapid Software Product Family
Development — A Case Study

Varvana Myllärniemi, Mikko Raatikainen, Tomi Männistö 73

Ontology-Based Feature Modeling and Application-Oriented Tailoring
Xin Peng, Wenyun Zhao, Yunjiao Xue, Yijian Wu 87

The COVAMOF Derivation Process
Marco Sinnema, Sybren Deelstra, Piter Hoekstra 101

A Metamodel Approach to Architecture Variability in a Product Line
Mikyeong Moon, Heung Seok Chae, Keunhyuk Yeom 115

X Table of Contents

An Approach to Managing Feature Dependencies for Product Releasing
in Software Product Lines

Yuqin Lee, Chuanyao Yang, Chongxiang Zhu, Wenyun Zhao 127

Adaptation and Composition Within Component Architecture
Specification

Luciana Spagnoli, Isabella Almeida, Karin Becker, Ana Paula Blois,
Cláudia Werner . 142

Reengineering Maintanance

Re-engineering a Credit Card Authorization System for Maintainability
and Reusability of Components – A Case Study

Kyo Chul Kang, Jae Joon Lee, Byungkil Kim, Moonzoo Kim,
Chang-woo Seo, Seung-lyeol Yu . 156

Odyssey-CCS: A Change Control System Tailored to Software Reuse
Luiz Gustavo Lopes, Leonardo Murta, Cláudia Werner 170

Case Study of a Method for Reengineering Procedural Systems into
OO Systems

William B. Frakes, Gregory Kulczycki, Charu Saxena 184

Programming Languages and Retrieval

Reconciling Subtyping and Code Reuse in Object-Oriented Languages:
Using inherit and insert in SmartEiffel, the GNU Eiffel Compiler

Dominique Colnet, Guillem Marpons, Frederic Merizen 203

Recommending Library Methods: An Evaluation of the Vector Space
Model (VSM) and Latent Semantic Indexing (LSI)

Frank McCarey, Mel Ó Cinnéide, Nicholas Kushmerick 217

Aspect-Oriented Software Development

Improving Extensibility of Object-Oriented Frameworks with
Aspect-Oriented Programming

Uirá Kulesza, Vander Alves, Alessandro Garcia,
Carlos J.P. de Lucena, Paulo Borba . 231

Comparing White-Box, Black-Box, and Glass-Box Composition of
Aspect Mechanisms

Sergei Kojarski, David H. Lorenz . 246

Table of Contents XI

Achieving Smooth Component Integration with Generative Aspects
and Component Adaptation

Yankui Feng, Xiaodong Liu, Jon Kerridge . 260

Approaches and Models

A Tactic-Driven Process for Developing Reusable Components
George Kakarontzas, Ioannis Stamelos . 273

Does Refactoring Improve Reusability?
Raimund Moser, Alberto Sillitti, Pekka Abrahamsson,
Giancarlo Succi . 287

Using the Web as a Reuse Repository
Oliver Hummel, Colin Atkinson . 298

Components

A UML2 Profile for Reusable and Verifiable Software Components for
Real-Time Applications

V. Cechticky, M. Egli, A. Pasetti, O. Rohlik, T. Vardanega 312

Formalizing MDA Components
Liliana Favre, Liliana Martinez . 326

A Component-Oriented Substitution Model
Bart George, Régis Fleurquin, Salah Sadou . 340

Building Reflective Mobile Middleware Framework on Top of the OSGi
Platform

Gábor Paller . 354

Goal-Oriented Performance Analysis of Reusable Software Components
Ronny Kolb, Dharmalingam Ganesan, Dirk Muthig,
Masanori Kagino, Hideharu Teranishi . 368

Short Papers

Establishing Extra Organizational Reuse Capabilities
Markus Voss . 382

Incremental Software Reuse
Juan Llorens, José M. Fuentes, Ruben Prieto-Diaz,
Hernán Astudillo . 386

XII Table of Contents

Variability in Goal-Oriented Domain Requirements
Farida Semmak, Joël Brunet . 390

Variability Modeling in a Component-Based Domain Engineering
Process

Ana Paula Terra Bacelo Blois, Regiane Felipe de Oliveira,
Natanael Maia, Cláudia Werner, Karin Becker . 395

GENMADEM: A Methodology for Generative Multi-agent Domain
Engineering

Mauro Jansen, Rosario Girardi . 399

Product Line Architecture for a Family of Meshing Tools
Maŕıa Cecilia Bastarrica, Nancy Hitschfeld-Kahler,
Pedro O. Rossel . 403

Binding Time Based Concept Instantiation in Feature Modeling
Valentino Vranić, Miloslav Š́ıpka . 407

Aspects as Components
Marcelo Medeiros Eler, Paulo Cesar Masiero . 411

Improving Reuse of Off-the-Shelf Components with Shared, Distributed
Component Repository Systems

Glêdson Elias, Jorge Dias Jr., Sindolfo Miranda Filho,
Gustavo Cavalcanti, Michael Schuenck, Yuri Negócio 415

Support to Development-with-Reuse in Very Small Software Developing
Companies

José L. Barros, José M. Marqués . 419

A Simple Generic Library for C
Marian Vittek, Peter Borovansky, Pierre-Etienne Moreau 423

Eliciting Potential Requirements with Feature-Oriented Gap
Analysis

Sangim Ahn, Kiwon Chong . 427

X-ARM: A Step Towards Reuse of Commercial and Open Source
Components

Michael Schuenck, Yuri Negócio, Glêdson Elias, Sindolfo Miranda,
Jorge Dias Jr., Gustavo Cavalcanti . 432

Table of Contents XIII

Tutorials

Implementing Domain-Specific Modeling Languages and Generators
Juha-Pekka Tolvanen . 436

Metrics and Strategy for Reuse Planning and Management
Bill Frakes, John Favaro . 437

Building Reusable Testing Assets for a Software Product Line
John D. McGregor . 438

The Business Case for Software Reuse: Reuse Metrics, Economic
Models, Organizational Issues, and Case Studies

Jeffrey S. Poulin . 439

Designing Software Product Lines with UML 2.0: From Use Cases to
Pattern-Based Software Architectures

Hassan Gomaa . 440

Aspect-Oriented Software Development Beyond Programming
Awais Rashid, Alessandro Garcia, Ana Moreira . 441

Author Index . 443

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 1 – 15, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Goal-Oriented Strategy for Supporting Commercial
Off-the-Shelf Components Selection

Claudia Ayala and Xavier Franch

Technical University of Catalunya
UPC-Campus Nord (Omega), 08034 Barcelona, Spain

{cayala, franch}@lsi.upc.edu

Abstract. The use of Commercial Off-The-Shelf (COTS) components is
becoming a strategic need because they offer the possibility to build systems at
reduced costs and within shorter development time. Having efficient and
reliable COTS components selection methods is a key issue not only for
exploiting the potential benefits of this technology, but also for facing the
problems and risks involved. Searching COTS components requires to
overcome several obstacles: the growing size and evolvability of the COTS
marketplace, the dependencies from the components to be selected with others,
and the type of descriptions currently available for those components. In this
paper, we present a goal-oriented strategy for an effective localization, analysis
and structuring of COTS components information. Our proposal is the GOThIC
method, which provides methodological support to the construction of
taxonomies. We present the seven activities that conform this method, which
are illustrated with the case of real-time synchronous communication tools.

1 Introduction

Nowadays, the construction of systems based on pre-packaged solutions, usually
known as Off-The-Shelf (OTS) components, is becoming an economic and strategic
need in a wide variety of different application areas. The potential benefits of OTS
technologies are mainly the reduced cost and shorter development time, while
maintaining the quality [1]. Nevertheless, many challenges, ranging from technical to
legal must be faced for adapting the traditional software engineering activities with
the aim of exploiting these benefits.

One of the most critical activities in OTS-based systems development is the
selection of the components that must be integrated therein. Selection is basically
composed of two main activities, namely search of candidates and their evaluation
with respect to system requirements.

However, most of the different existing methods for COTS selection -as those
surveyed in [2] and [3]- (e.g. CAP, CARE, CEP, CRE, OTSO, PECA, PORE,
QESTA, Scarlet, STACE, and Storyboard) focus on evaluation instead of search. This
lack of specific proposals is a serious drawback that impacts in selection reliability:
no matter how good is the evaluation process, selection may be wrong if the
candidates chosen to be evaluated are not the right ones.

2 C. Ayala and X. Franch

Searching candidate OTS components is not an easy task, especially in the case of
Commercial-Off-The-Shelf (COTS) components, i.e. components that are acquired
for a fee. On the one hand, COTS components are a class of reusable components,
and it is well-known that one of the essential problems in reusing software
components is locating and retrieving them from a large collection [4]. On the other
hand, COTS search must cope with some challenging characteristics:

1. Growing size of the COTS marketplace: New and improved products and
technologies are continuously offered. Thus, existing market segments offer more
and more products, and new market segments are continuously emerging. Mobile
technologies are a good example of both situations.

2. Rapid changes in the COTS marketplace: New versions of existing products are
released every few months. Moreover, market segments frontiers move slightly
over the years, making products to offer services that initially were seen as
belonging to different segments. For instance, current mail server systems usually
provide instant messaging facilities, even video-conferencing services.

3. Dependencies among COTS components: COTS components are not designed to
work isolated, but in collaboration with others. Therefore many dependencies
among them exist, either for enabling, enhancing or complementing their
functionality [5]. For instance, document management systems need document
imaging tools for scanning and storing paper documents.

4. Type of descriptions available for COTS components: COTS components suppliers
do not provide the kind of structured information that would allow performing
automated or at least assisted search. Moreover, it is not realistic to think that the
situation will change in the future. This is especially true for coarse-grained COTS
components such as ERP, CRM or CMS systems. The situation is aggravated by
the fact that supplier information of course tends to highlight strengths and hide
weaknesses of the licensed components.

Consequently, when carrying out a particular searching process, some practical
questions may arise: Which are the market segments of interest for this particular
context? Which are the relationships among the identified market segments and which
are their implied needs? How can structured and trustable information be obtained for
the COTS components available in the marketplace?

In this paper, we claim that an effective COTS search strategy shall rely on a
thorough description of the COTS marketplace whose nature adapts to the above
mentioned characteristics (diversity, size, evolvability, interoperability, lack of
structure and subjectivity) and therefore provides real answers to the questions above.
Therefore, we present a method called GOThIC (Goal-Oriented Taxonomy and reuse
Infrastructure Construction) aimed at building a reuse infrastructure that may be used
in COTS search processes by arranging marketplace segments as a taxonomy. The
nodes of this taxonomy are characterized by means of goals and their relationships
declared as dependencies. The method includes a domain analysis phase which faces
the problem of unstructured and not validated information coming from lots of
information sources. The rest of the paper is organized as follows. In section 2 we
present our research method and previous work. Related work is presented in section 3.
The core of the proposal, the GOThIC method, is presented from sections 4 to 11,

 A Goal-Oriented Strategy for Supporting COTS Components Selection 3

illustrated with a case study on the category of real-time synchronous communication
tools. Finally, in section 12 we give the conclusions and some future work.

2 Research Method and Previous Work

Our proposal relies on several industrial experiences which have been undertaken
under action-research premises [6], as well as literature survey and grounded theory
[7]. Furthermore, we have formulated in early work some preliminary proposals. This
section provides details about both points.

The first industrial experience taken was in the context of an academic record
management information system development which was planned to include some
strategic business functionalities. We undertook a thorough analysis of the domain
and experimented the problems mentioned in the introduction. As a result, we
presented a first paper [8] proposing the use of taxonomies to structure the COTS
business application marketplace. After this, we had other collaborations in the field
of requirements management tools, telephony systems and others. We complemented
these real cases with some academic ones. As a result, given that there is some
evidence that goals are quite stable with respect to changes [9] and goal refinement
provides a natural mechanism for structuring and exploring many alternatives [10],
we incorporated the notion of goal to formalize the meaning of the nodes in the
taxonomy making it domain-independent. Subsequently, we presented a goal-oriented
method called GBTCM (Goal-Based Taxonomy Construction Method) which added
the process dimension to our previous work [11]. It was inspired on GBRAM (Goal-
Based Requirements Analysis Method) [10], a widespread method in the requirements
engineering discipline. Although GBTCM was an improvement of our previous work,
we have recently encountered some method design flaws, some due to the use of
GBRAM in a different context, others due to our method as such. The flaws are:

• GBRAM is a requirements acquisition method; therefore the sources of informa-
tion are mainly human beings, which is not the case in the COTS context.

• Furthermore, GBRAM lacks of proper mechanisms to deal with the huge amount
of unstructured information of the COTS marketplace.

• GBTCM does not give the required importance to the analysis of the domain,
which is more difficult than in a non-COTS context because expertise is needed
not only on the domain itself but also on how this domain is represented in the
marketplace.

• GBRAM is a one-shot method, with no orientation to knowledge reuse.
• GBTCM focuses on the market segments but did not consider the COTS

components themselves.
• GBTCM definition was not oriented to having tool-support.

The GOThIC method presented in this paper, aims at overcoming these flaws.

3 Related Work

Due to the highly applicable nature of the subject of our research, we find related
work not only concerning scientific proposals but also in the way that the COTS

4 C. Ayala and X. Franch

marketplace is really organized nowadays. Profit and non-profit organizations define
categories of services, products, and knowledge, usually structured in a hierarchical
form. This type of organizations can be classified as follows:

• IT consultant companies such as Gartner [12] or Forrester [13] use these categories
to structure their reports and services on IT technology.

• Commercial web-based companies such as ComponentSource [14] and Genium
[15] group the products commercially available for facilitating the web browsing.

• Professional societies such as INCOSE [16] use hierarchies to organize systems
engineering knowledge (often not related specifically to COTS issues).

• Portals with different registration procedures offer white reports, user’s opinions
[17], [18] or technical products from research projects [19].

In the academic world, organizations, teams and individuals have presented their
own proposals that range from specific of one domain [20] to a wide range [4] [21] or
even a field [22], being the extreme case proposals such as SWEBOK that acts as a
body of knowledge of a particular discipline [23]. Nevertheless, it is well-know that
the effort devoted to these activities is more valuable if the attributes can be reused; in
this sense a wide range of works about COTS characterization exists [24-27] (see [28]
for a recent survey).

However, such proposals do not provide proper mechanisms for facing the
characteristics of the COTS marketplace mentioned in the introduction. Furthermore,
sometimes, the meaning of a particular domain is not clear without further examining
the items, especially if the domain is absolutely unknown to the user. Consequently
the understanding, use, evolution, extension, and customization of the categorization
proposal may be difficult. We have experienced in details these drawbacks in the case
of Gartner and INCOSE, whose classifications were used as starting points in [8] and
[11], respectively.

To sum up, we consider that there is a gap between the mentioned proposals and
their applicability in the COTS search context that is considered an important open
issue [29].

4 An Overview of the GOThIC Method

The GOThIC method has been structured into seven activities:

1. Exploration of information sources.
2. COTS marketplace domain analysis.
3. Identification, refinement, and statement of goals.
4. Establishment of dependencies.
5. Goal taxonomy structuring.
6. Taxonomy validation.
7. Knowledge base management.

Although presented as sequential for clarity, these activities may in fact be
intertwined and iterated as required to obtain the target infrastructure incrementally.
Furthermore, the GOThIC method does not depend on the extent and characteristics

 A Goal-Oriented Strategy for Supporting COTS Components Selection 5

of the taxonomy built (e.g., a small part of the COTS marketplace such as photo
processing software, or a huge portion like business applications).

The ultimate goal of the method is to populate a knowledge base with data
according to the UML [30] conceptual model sketched in Fig. 1.

At the heart of this model lies the taxonomy composed of two types of nodes,
market segments and categories, which are characterized by their goals. Market
segments are the leaves of the taxonomy, whilst categories serve to group related
market segments and/or subcategories (e.g., the category of communication
infrastructure systems or financial packages).

Fig. 1. Conceptual model for goal-oriented COTS taxonomies: overview

From a semantic point of view, market segments stand for the basic types of COTS
components available in the marketplace (e.g., the domain of anti-virus tools or
spreadsheet applications), i.e. atomic entities covering a significant group of
functionality such as their decomposition would yield to too fine-grained domains. As
a consequence, COTS components are associated with market segments and not with
categories (although an indirect relationship exists, because market segments belong
to categories). Components may cover more than one market segment. For
simplification purposes, we are not distinguishing at the moment versions of
components; two different versions are treated as two different products.

Dependencies among nodes provide a comprehensive view of the marketplace. In
the case of dependencies among market segments, they stand for interoperability
needs (e.g. mail server systems depend on anti-virus tools to support integrity).
Concerning categories, more abstract relationships are modeled. In addition to
taxonomy nodes, dependencies may involve goals, when the relationship can be
established more accurately. The Dependable Entity superclass allows modeling this
situation comfortably. Note that dependencies are represented by a ternary
association, because they involve two elements (depender and dependee) and the
relationship itself.

Finally, nodes have auxiliary artifacts bound, which are built during the domain
analysis activity. Their construction is a result of the analysis of some information
sources which are gathered, analyzed, and prioritized according to several
characteristics.

6 C. Ayala and X. Franch

In following sections, we provide details of the GOThIC method activities. To
illustrate our approach, we use the Real-Time Synchronous Communication (RTSC)
category. It means the various tools and technologies used to enable communication
and collaboration among people in a “same time-different place” mode.

5 Exploration of Information Sources

This activity must be able to locate as much relevant information as possible, dealing
with the diversity of its type, supporting media, cost, etc. We distinguish three related
subactivities:

• Gathering of sources. Identification of the potential information sources for the
domain of interest using information acquisition techniques (e.g., literature review,
web screening, etc.). We have identified the following types of sources: existing
hierarchies, taxonomies and ontologies; related standards; vendors information;
independent reports (scientific, divulgation and technical); oral information; test of
tools and systems; real experiences on the field; others.

Table 1. Information sources for the RTCS case

Information Source Information
Type Language Examples Utility

Existing Taxonomies and Ontologies
Classifications;

Categories;
Glossaries

Natural
Language (NL);

Tree-like
diagrams

Gartner, IDC,
eCOTS,

ComponentSource

They help not only for
understanding domains and
refining goals, but also for

getting insights for organising
goals.

Related Standards Descriptions;
Glossaries NL

IETF-SIP
ITU H.323
ISO 9126-1

They are considered the most
confident of the sources, so the
high-level goals are based on

them.

Vendors Information

Brochures;
Evaluation

forms;
Benchmarks

NL;
Values for
attributes

Microsoft
They are helpful to know
functionalities, trends and

interactions among components

Scientific
Academic Events,

Jounals
Textbooks

Precise and
rigorous

descriptions

NL; Models;
Formulas;
Schemas

ICCBSS, ICSE, TSE

Divulgation
Magazines,
Forums and
Websites

Descriptions and
tips for the

general public

NL;
Schemas; Tables

PCWorld, IEEE
Software, COCOTS

website,

Independent
Reports

Technical
White Papers,
Surveys and

Comparatives

Papers,
Comparative

tables

NL, Tables;
Figures

Gartner, INCOSE,
eCOTS

Interviews Oral
Information Talks, seminars and courses

Knowledge;
Tips; Practical

Info.
NL

ICCBSS panels, SEI
courses, Business

luncheons

Test of Tools and Systems Test results;
User’s manuals Visual data; NL

ICQ, MSN
Messenger,

CommuniGate

Real Experiences on the field Knowledge;
Technical reports Knowledge; NL Past projects made

Others Any Any

The information enclosed in this
kind of sources, generally helps

to understand domains and
refining goals into sub goals.

• Analysis of sources. Some techniques are applied to determine the relevant criteria
to be used to rank the identified sources: reliability of the information; availability

 A Goal-Oriented Strategy for Supporting COTS Components Selection 7

of the source; acquisition cost; timeliness; scope covered; and time needed to
process the enclosed information. These criteria move along three dimensions:
information source type, organization or people that created the information, and
particular item of information.

• Prioritisation of sources. The analysed sources are ranked according to several
characteristics of the taxonomy construction project, mainly: expected frequency of
taxonomy use in future selection processes; resources allocated to the project,
especially deadline, money and person/months; current and future knowledge of
the domain and technical skills of the conformed team; expected criticality of the
domain (and therefore required accuracy and completeness of the solution).

At the end of this phase we have a knowledge acquisition program which will
allow extracting knowledge from the domain by reconciling the characteristics of the
available sources with those of the taxonomy construction process. Table 1 is an
excerpt of the information sources considered for the RTSC case and shows details of
their utility and the kind of information therein. Fig. 2 shows an excerpt of some
mechanisms and artifacts we used for analyzing sources.

 Name Type Author Cost …

1
Session Initiation

Protocol
Standard Engineering Task Force Free

2 H.323 Standard
International Telecommunication

Union
±80€

3 IMTC
Independent

Report
International Teleconferencing

Consortium
Free

4 RTC-Gartner Hierarchy Gartner Free
:

Example of Questionnaire

Determining Author reliability

Is it a reputable author or organization?

Excellent Good

Satisfactory Weak
Did you see this source listed in
other sources?

Yes No
…

Example of Questionnaire

Determining Author reliability

Is it a reputable author or organization?

Excellent Good

Satisfactory Weak
Did you see this source listed in
other sources?

Yes No
…

Fig. 2. Examples of the artifacts used for the information sources analysis

6 Domain Analysis

Domain analysis has been identified as a major factor in the success of software
reusability [31]. Its goal is to identify the basic elements of the domain, organize an
understanding of relationships among these elements, and represent this
understanding in a useful way. Domain analysis is especially crucial in our approach
because of two main reasons:

• One of the most endangering points in the COTS framework is the widespread
information and lack of standard terminology, the same concepts are named
different by different vendors or even worse, the same name may denote different
concepts in different COTS components. Thus, using domain analysis principles
we avoid syntactic and semantic discrepancies common in the COTS marketplace.

• The core elements of a domain and the relationships among them usually remain
more stable, while the technologies and implementation environments are in
continuous evolution.

Several proposals of domain analysis available in the literature may differ in the
type of artefacts proposed to record the knowledge. In this work, we propose the
following four artefacts:

8 C. Ayala and X. Franch

• Use Case Specification. A UML use case diagram [30], arranged in packages if
necessary, to provide an overall view of the services that the COTS components in
the market segment or category offer. Individual specifications of use cases are
recommended to be very abridged, for different reasons (evolvability of
marketplace, avoid committing to behaviour of particular COTS components, etc.).

• Class Diagram. To keep track of the fundamental concepts in the domain, their
attributes, associations and taxonomic relationships. Also in UML [30].

• Quality Model. A hierarchical representation of the quality factors applicable to the
domain, such as those referring to efficiency and integrity, together with their
metrics. For standardization issues, we propose the use of the ISO/IEC 9126
quality standard [32].

• Glossary of terms. It includes at least the names of elements in the class diagram
and the quality model. The glossary must not include overloaded terms, although
many definitions may exist for a single term (which should be semantically
equivalent). We propose to use the Language Extended Lexicon (LEL) [33] for
capturing the meaning and fundamental relationships of the particular symbols
(words or phrases) of the domain.

Characteristic Attributes Metric

Suitability Presence and appropriateness of the set of
functions for satisfying the goal bounded. Functionality

Accuracy
Provision of the right results or effects with
respect to the goal.

… …

SynonymousSynonymous TermsTerms

Software Server
Server Application
Redirect Server

Caller
Sender

Receiver
Callee

User Agent
Client Application

Software Client

…

SynonymousSynonymous TermsTerms

Software Server
Server Application
Redirect Server

Caller
Sender

Receiver
Callee

User Agent
Client Application

Software Client

…

Use Case Example

Excerpt of the Glossary showing
synonymous terms

Excerpt of the Quality Model

Excerpt of the UML Domain Model

Fig. 3. Excerpt of models built for the RTCS case

It is important to remark that the models present some relationships when
considering the nodes in the taxonomy. Contradictions when composing or joining
models may arise and of course they should be detected and reconciled. In Fig. 3 we
show excerpts of the four types of artifacts for the RTSC case.

 A Goal-Oriented Strategy for Supporting COTS Components Selection 9

7 Identification, Refinement and Statement of Goals

A goal is an objective that should be achieved and may be formulated at different
levels of abstraction [9]. The activities performed in this stage are iterative and have
the next objectives:

• Identification aims at extracting goals from available sources applying different
goal-acquisition techniques [34] as scenarios and Inquiry Cycle (IC) approach [35].

• Refinement entails the goal refinement considering obstacles, scenarios to uncover
hidden goals and mechanisms to discover synonymous or duplicated goals. Table 2
is an example of the use of scenarios for obtaining goals in the RTSC case.

• Statement consists on expressing the goals in a systematic way. We use a pre/post
style for specifying these goals, i.e. stating which conditions are met when others
hold, as showed in Table 3.

Table 2. A scenario excerpt of the RTSC case study

Action Initiator Goal
Consumed
 Resources

Produced
Resources

Action Addressed

Human User (Sender) Message Sent Message
Message,

Receiver address
Requesting to

Software Client

Software Client
Sent Request to the

Server
Message, Receiver address Sender address

Requesting to
Software Server

Software Server Messages Routed
Message, Sender and Receiver

address
Routed Receiver address

Sending to Software Client
(Receiver)

Software Client
Message
Delivered

Message, Sender address Message
Deliver to a Human User

(Receiver)
Human User
(Receiver)

Message
Received

Message,
Sender address

Message Answering

Table 3. An example of goal statement

Goal: Multiuser Textual Communication Established
Type Achievement
Description Provide RTSC in a Text Multi-user Environment
Agent Software Client
Stakeholder(s) Software Client, Software Server, Sender, Receiver

Precondition(s)
1) Users Communicated in Real Time;
2)Session Established;
3) Number of users >=2

Postcondition(s) Multiuser Textual Communication Established

Subgoal(s)
1) Software Client Provided;
2) Software Server Provided

8 Establishment of Dependencies

We have identified that a COTS component may need another for:

• Enabling its functionality. For instance, in order to follow document life-cycles,
document management tools need workflow technology to define them.

• Complementing its functionality with an additional feature, not originally intended
to be part of its suitability. For instance, a web page edition tool can complement a
web browser to facilitate the edition and modification of web pages.

• Enhancing its quality attributes. For instance, resource utilization can be improved
significantly using compression tools.

10 C. Ayala and X. Franch

D

Fig. 4. i* SD model representing some high level dependencies identified in the RTSC case

Fig. 4 shows some dependencies for the RTSC case. Relationships are gradually
identified analyzing the goal information obtained in previous activities. These
relationships are declared as dependencies using goal-oriented models, specifically i*
models [36]. Using this notation as proposed in [5], we represent market segments
and categories as i* actors, and establish dependencies that may be of four different
types: goal dependencies, when an actor depend on another to attain a goal; task
dependencies, when an actor requires another to perform an activity in a given way;
resource dependencies, when an actor depends on another for the availability of some
data; and soft goal dependency, when an actor depends on another to achieve a certain
level of quality of service.

9 Goal Taxonomy Structuring

Taxonomic classification in the form of decision tree is the intellectual tool that helps
us to organize goals in order to establish a structure and the locate/retrieve
mechanisms. Our taxonomies are goal-driven, which means we provide semantics to
the nodes expressing goals, giving a rationale for the decisions taken. The
organization of goals comes from the analysis of pre and post-conditions stated for
each goal. Goals are operationalized in terms of variables which, in the case of
categories, represent classifiers (e.g., number of users of the system, data processing
profile, …). These classifiers may take values (e.g., for data processing profile, values
are Acquisition, Storage, Preparation, Analysis), and for each possible value, a
subcategory or market segment applies. Thus, Goals are defined over a set X ={xk}n
of independent variables that characterize the taxonomy. Goal satisfaction is defined
by means of assignment to the variables, therefore for each assignment ass = (x1←v1,
…, xn←vn), the expression satass(G) yields true if the goal G evaluates to true for this
assignment, otherwise false. Table 4 shows an excerpt of the departing goal hierarchy
for the RTSC case as well as its variables assignment, considering that all the
assignments are inherited downwards the hierarchy.

Table 4. Excerpt of the departing goal-oriented taxonomy for RTSC case

Goal /SubGoal Variable Satisfaction Values
Users Communicated in Real Time TypeOfConnection TypeOfConnection←RealTime

Intra-organizational Communication
Established

Infrastructure Infrastructure ←Intranet

 Global Communication Established Infrastructure Infrastructure←Internet/WAN
 …

 A Goal-Oriented Strategy for Supporting COTS Components Selection 11

10 Taxonomy Validation

In order to be useful for driving COTS search processes, we require three conditions
to the taxonomy: to be consistent, to be complete and to be not ambiguous. Also, we
aim at leveraging its nodes to get similar levels of abstraction in the nodes of the same
level. We have defined the process of taxonomy validation as the repeated application
of some stated transformation rules (defined in terms of the goals pre and post-
conditions) over the nodes to manipulate the hierarchy until reaching a stop condition.
These transformations rules shall satisfy a precondition to be applied until
completeness and correctness conditions with respect to the involved goals is assured,
in such a way that a goal-oriented taxonomy is said to be correct and complete if it
satisfies these invariant conditions. Specifically, this process has 4 steps each of them
is aimed to ensure each condition:

• Step 1 ensures the hierarchy of nodes is well-formed, which means that satisfaction
of the goal of a node implies satisfaction of its parent goal.

• Step 2 that the variable assignation provides a unique way for classifying COTS
components, which means that there is no variable assignment which makes two
siblings satisfy their goals simultaneously.

• Step3 that any COTS related with the domain can always be classified using the
taxonomy, i.e. that the taxonomy covers all the possible assignment of variables.

• Step 4 was added for applying transformation rules in order to tailor the taxonomy
to the particular (and subjective) taste of the designer with respect to the level of
detail and organizational concerns.

This process and applicable transformation rules are detailed in [37]. Through this
process we manipulated the nodes in a formal way to obtain the resulting taxonomy.
For instance, in Table 4 we can see that the goal Users Communicated in Real Time
was implying as subgoals 2 ways in which we can establish a communication;
however in the resulting taxonomy showed in Table 5, 3 nodes are stated because the
goal Global Communication Established was mixing 2 different concepts and func-
tionalities that seems to be fashionable requirements demanded in the marketplace:

Table 5. Partial view of the RTSC Taxonomy

Categories
Level 1 Level 2 Level 3 Level 4

Market Segments

… … Multi-User Shared Applications
Multi-user We-Based Chat Client Applications

o. Chat Client
Multi-user No Web-Based Chat Client Applications j. Chat

p. Chat Server Multi-user Chat Server Applications
 Multi-user Video Applications

d. Multi-user
Communication

k. Video&Audio
 Multi-user Audio Applications

… … One-to-One Shared Applications
One-to-One We-Based Chat Client Applications

s. Chat Client
One-to-One No Web-Based Chat Client Applications i. Chat

t. Chat Server One-to-One Chat Server Applications
 One-to-One Video Applications

a. Intranet
Communication

e. One-to-One
Communication

m.Video&Audio
 One-to-One Audio Applications

f. Multi-user … … … b. Internet
Communication g. One-to-One … … …

h. Multi-user … … … c. WAN
Communication i. One-to-One … … …

12 C. Ayala and X. Franch

Internet Communication Established and WAN Communication Established; thus we
applied a rule for showing explicitly this value preserving correctness and complete-
ness properties. As a result of the process we have a high quality taxonomy in which
the rationale for the classification is very clear and correctness and completeness are
ensured by construction.

11 Knowledge Base Management

Many studies refer it is necessary to build a body of knowledge towards a knowledge-
based framework for COTS components identification [29],[1]. The GOThIC method
provides an efficient mechanism to maintain a repository of the obtained knowledge
due to the UML class diagram that defines the form that this repository exhibits (see
[38] for details). This knowledge base is the infrastructure support not only for an
easy evolution and maintaining of taxonomies, but also for their suitability to specific
organizational concerns.

12 Conclusions

In this paper we have presented the GOThIC method for facing COTS components
search that is based on the notion of goal for building abstract, well-founded and
stable taxonomies, which may evolve as the marketplace does. GOThIC is defined in
a rigorous way, with a conceptual model that introduces all the concepts needed; and
has been presented as a way to overcome the characteristics of the COTS marketplace
mentioned in section 1:

• Growing size of the COTS marketplace. Proliferation of information is taken into
account by prioritizing information sources in the bases of given criteria (time,
money, reliability, …). Appearance of a new market segment is easier to handle
than in other approaches, since it requires to locate its place in the taxonomy using
the defined classifiers, and once there even some useful artifacts are inherited (e.g.,
quality models and glossaries).

• Rapid changes in the COTS marketplace. We use a goal-oriented approach, in the
belief that goals are stable concepts [9]. Also, the fact that taxonomy nodes do not
stand for types of COTS components available but for related groups of
functionalities, makes the taxonomy more robust with respect to the segment
barriers movement effect mentioned in the introduction.

• Dependencies among COTS components. We represent explicitly these
dependencies with a model built with i*, a widespread and accepted notation in
other disciplines (e.g., requirements engineering, agent-oriented development).

• Type of descriptions available for COTS components. We have identified two
activities for collecting information sources and carrying out domain analysis to
cope with the diversity, lack of structure and lack of reliability of information
about COTS components. Also, our resulting taxonomy provides an external view
that is: well-founded (with a clear rationale of the proposed structure), validated
(sound, complete, pair-wise disjoint and balanced) and ready to browse (using the
defined classifiers).

 A Goal-Oriented Strategy for Supporting COTS Components Selection 13

It is worth to think about applicability of the method. Basically, GOThIC requires
the following characteristics to be applicable:

• The taxonomy addresses a category of market segments that is of general interest.
This means that a great deal of organizations need to select COTS components
from these segments. Some examples are: communication infrastructure (including
the RTSC case used in this paper), ERP systems, security-related systems, etc. In
these contexts, the number of selection processes that take place will be high and
then reusability of the models likely to occur.

• The addressed market segments offer COTS components of coarse-grained
granularity. This makes domain understanding more difficult, time-consuming and
cumbersome and therefore domain analysis and taxonomy construction are helpful.
Market segments such as CRM and ECM systems are typical examples, whilst
time or currency converters are not. In these cases, having knowledge available and
classifiers to know when a market segment is of interest is a great help. This last
point is especially appealing in those selection contexts in which the organization
that is interested in the selection does not have clear requirements about the kind of
system needed.

• The COTS components search activity is monitored by an organization that
accumulates experience from past selection processes. This organization will find
valuable to have means to transfer knowledge from one experience to another and
to assist their clients in the maintenance of their COTS-based software systems.

As a result, diverse actors may benefit from our approach:

• IT consultant companies offering assessment for business automation may
structure their services better.

• Commercial web-based companies or portals may structure their offering in well-
founded categories with a clear rationale behind.

• Medium and large-size companies with their own IT department may be more
confident on their own selection processes.

• Software engineers which usually carry out COTS components selection may
structure better their knowledge and may aim at a better return of investment.

At the time being, we have experimented our GOThIC method in the following
fields: Real-Time Synchronous Communication Systems, Message-based Communi-
cation Systems, some sub-categories of Enterprise Applications (with emphasis with
those related to Content Management) and Requirements Engineering Tools. The
results are promising from the academic point of view, but we have not had the
chance yet to make a proper validation involving an industrial partner, by means of
some action-research collaboration as we have done in the past. Industrial validation
is our main aim for future work. We also are going to tackle immediately develop-
ment of tool support starting from the UML conceptual model detailed in [38].

References

1. Li, J., Conradi, R., et al. “Validation of New Thesis on Off-The-Shelf Component-Based
Development” Proceedings 11th IEEE International Software Metrics Symposium, 2005.

2. Ruhe, G. “Intelligent Support for Selection of COTS Products” Proceedings Web
Databases and Web Services 2002. LNCS 2593, pp. 34-45, 2003.

14 C. Ayala and X. Franch

3. Morisio, M., et al. “COTS-based software development: Processes and open issues”
Journal of Systems and Software 61(3):(2002)

4. Prieto-Díaz, R; Freeman, P. “Classifying Software for Reusability” IEEE Software.
January 1987.

5. Franch, X., Maiden, N. “Modelling Component Dependencies to Inform their Selection”
Proceedings 2nd International Conference on COTS-Based Software Systems (ICCBSS
2003).

6. Baskerville R., Wood-Harper A.T. “Diversity in Information Systems Action Research
Methods” European Journal on Information Systems. Vol. 7 No.2, June 1998.

7. Martin, P., Turner, B. “Grounded Theory and Organizational Research” Journal of
Applied Behavioral Science.1986; 22: 141-157.8.

8. Carvallo, J.P., Franch, X., et al. “Characterization of a Taxonomy for Business
Applications and the Relationships among Them” Proceedings 3rd International
Conference on COTS-Based Software Systems (ICCBSS 2004), LNCS 2959, 2004.

9. van Lamsweerde, A. “Goal-Oriented Requirements Engineering: A Guided Tour”
Proceedings 5th IEEE International Symposium on Requirements Engineering. 2001.

10. Antón, A. I.. “Goal Identification and Refinement in the Specification of Software-Based
Information Systems”. Ph.D. thesis, Georgia Institute of Technology, June 1997.

11. Ayala, C.P., Botella, P., Franch, X., “On Goal-Oriented COTS Taxonomies Construction”
Proceedings 4th International Conference on COTS-Based Software Systems (ICCBSS
2005), LNCS 3412, 2005. Bilbao, Spain.

12. Gartner Inc. www.gartner.com.
13. Forrester Research Inc. www.forrester.com
14. ComponentSource componentsource.com
15. Genium Software Development http://www.genium.dk/index. xml
16. INCOSE www.incose.org.
17. IT products guide. http://productguide.itmanagersjournal.com
18. eCOTS www.ecots.org
19. CBSE www.cbsenet.org/pls/CBSEnet/ecolnet.home
20. Arranga, E. “Cobol Tools: Overview and Taxonomy” IEEE Software, 17(2): 59-61, 2000.
21. Llorens, J; Astudillo, H. “Automatic Generation of Hierarchical Taxonomies from Free

Text Using Linguistic Algorithms” Advances in OO Inf. Systems. LNCS 2426/2002. pp.
74-83.

22. Glass, R.L; Vessey, I. “Contemporary Application-Domain Taxonomies” IEEE Software
July 1995.

23. SWEBOK www.swebok.org.
24. Ochs, M.A., Pfahl, D., et al. “A Method for Efficient Measurement-based COTS

Assessment and Selection-Method Description and Evaluation Results” Proceedings IEEE
7th International Software Metrics Symposium, 2001.

25. Carney D., Long F. “What Do You Mean by COTS? Finally a Useful Answer” IEEE
Software, 17 (2), March/April 2000

26. Bianchi, A; Caivano, D; et al. “COTS Products Characterization: Proposal and Empirical
Assessment”. ESERNET 2001-2003. LNCS 2765, 2003.

27. Erofeev, S; DiGiacomo, P. “Usage of Dynamic Decision Models as an Agile Approach to
COTS Taxonomies Construction” International Conference on COTS-Based Software
Systems (ICCBSS 2006). IEEE 2006.

28. Cechich, A., Réquilé-Romanczuk, A., et al. “Trends on COTS Component Identification
and Retrieval” International Conference on COTS-Based Software Systems (ICCBSS
2006).

 A Goal-Oriented Strategy for Supporting COTS Components Selection 15

29. Réquilé-Romanczuk, et al. “Towards a Knowledge-Based Framework for COTS
Component Identification” ICSE-MPEC 2005, USA. ACM 2005.

30. UML Specifications http://www.uml.org/
31. Prieto-Díaz, R., Arango, G. “Domain Analysis and Software Systems Modelling” IEEE

Computer Society Press, 1991. p. 300.
32. ISO/IEC International Standard 9126-1 “Software Engineering-Product Quality-Part 1:

Quality Model” 2001.
33. Leite, J.C.S.P. “Application Languages: A Product of Requirements Analysis” Informatics

Department PUC-/RJ (1989).
34. Regev, G. “Where do Goals Come from: the Underlying Principles of Goal-Oriented

Requirements Engineering” 13th IEEE Requirements Engineering Conference (RE 2005).
35. Potts, C., Takanashi, K., Antón, A. “Inquiry-Based Requirements Analysis” IEEE

Software, 11 (2), March 1994.
36. Yu, E. “Modelling Strategic Relationships for Process Reengineering” PhD Thesis,

University of Toronto, 1995.
37. Ayala, C., Franch, X. “Transforming Software Package Classification Hierarchies into

Goal-Based Taxonomies” Proceedings 16th International Conference on Database and
Expert System Applications (DEXA 2005). LNCS 3588. Copenhagen, Denmark. August
2005.

38. Ayala, C., Franch, X. “A process for Building Goal-Oriented COTS Taxonomies” LSI-
Department. Technical University of Catalunya. 2006. Report Number: LSI-06-7-R.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 16 – 28, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A State-of-the-Practice Survey of Off-the-Shelf
Component-Based Development Processes

Jingyue Li1, Marco Torchiano2, Reidar Conradi1, Odd Petter N. Slyngstad1,
and Christian Bunse3

1 Department of Computer and Information Science,
Norwegian University of Science and Technology (NTNU),

NO-7491 Trondheim, Norway
{jingyue, conradi, oslyngst}@idi.ntnu.no

2 Dip. Automatica e Informatica, Politecnico di Torino
Corso Duca degli Abruzzi, 24, I-10129 Torino, Italy

marco.torchiano@polito.it
3 Fraunhofer IESE, Fraunhoferplatz 1,

D-67663 Kaiserslautern, Germany
Christian.Bunse@iese.fraunhofer.de

Abstract. To gain competitive advantages software organizations are forced to
develop systems quickly and cost-efficiently. Reusing components from third-
party providers is one key technology to reach these goals. These components,
also known as OTS (Off-the-Shelf) components, come in two different types:
COTS (Commercial-Off-The-Shelf) and OSS (Open–Source-Software) compo-
nents. However, the reuse of pre-fabricated components bears one major
question: How to adapt development processes/methods with refer to system
development using OTS components. To examine the state-of-the-practice in
OTS component-based development a survey on 133 software projects in Nor-
way, Italy and Germany was performed. The results show that OTS-based de-
velopment processes are typically variations of well-known process models,
such as the waterfall- or prototyping model, mixed with OTS-specific activities.
One reason might be that often the process is selected before the use of OTS
components is considered. Furthermore, the survey shows that the selection of
OTS components is based on two processes: “Familiarity-based” and “Internet
search-based”. Moreover, it appears that the lifecycle phase to select OTS com-
ponents is significantly correlated with a project members’ previous familiarity
with possible OTS candidates. Within this paper, we characterize the state-of-
the-practice concerning OTS processes, using seven scenarios, and discuss how
to decide or modify such processes and how to select OTS components.

1 Introduction

Software development with OTS components is becoming increasingly popular in
research and industrial communities. The use of OTS components introduces new
requirements, which again require revised development processes. Although research-
ers and practitioners have been dealing with such processes quite a time, most studies
are based on military or aerospace projects [10], [15], or other large projects. To

 A State-of-the-Practice Survey of OTS Component-Based Development Processes 17

propose and design cost-effective OTS-based development processes, it is necessary to
investigate how such projects are performed in different domains and project contexts.

Within a first, exploratory study, we investigated the commonalities and differ-
ences between development processes in 16 COTS-based software projects in
Norway [6]. The study summarized several variations in COTS-based development
processes and concluded that the customization of such development processes
crucially depends on the project context, such as familiarity with possible COTS
components and flexibility of requirements. Due to the small sample size it is neces-
sary to verify these conclusions with a larger and more representative sample.

The study presented in this paper investigated several conclusions about variations
in development processes, based on the exploratory study. The results show that the
actual OTS component-based development processes are typically variations of well-
known process models. In addition, two OTS component selection processes, such as
familiarity-based and Internet search-based, are widely used in practice. By summa-
rizing the state-of-the-practice of OTS component-based development processes using
seven scenarios, we give systematic proposals on how to adopt the OTS-based devel-
opment and OTS selection processes based on the project context.

The remainder of the paper is structured as follows: Section 2 presents previous
studies and their research questions. Section 3 presents selected samples and Section 4
presents the empirical results. Discussions on customizing OTS-based development
processes are given in Section 5 and Section 6 separately. Possible threats to validity
are discussed in Section 7. Conclusion and future research are in Section 8.

2 Related Work and Research Questions

There is a consensus that the use of COTS components implies changes in the soft-
ware process [2]. Some studies focused on the whole software development lifecycle
[1], [3], [10]. Others investigated the specific phase, especially in COTS component
selection and evaluation [5], [8], [9], [11], [12], [13], [14].

2.1 Process of the Whole Software Development Lifecycle

Boehm et al. [3] regard both the waterfall model and evolutionary development as
unsuitable for COTS-based development. In the waterfall model, requirements are
identified at an earlier stage and COTS components chosen at a later stage. This
increases the likelihood of COTS components not offering the required features. Evo-
lutionary development assumes that additional features can be added if required.
However, COTS components cannot be upgraded by one particular development
team. The frequent lack of code availability hinders developers to adapt them to their
needs. Therefore, Boehm et al. proposed that development models, which explicitly
take risk into account, are more suitable for COTS-based development than the tradi-
tional waterfall or evolutionary approaches.

The National Aeronautic and Space Administration (NASA) has been developing
systems using COTS components for many years (see [10] for the summary of ex-
perience made). Various processes, used across 15 projects, were examined and used
as a basis for a common COTS-based development process.

18 J. Li et al.

The Software Engineering Institute developed the Evolutionary Process for Inte-
grating COTS-based Systems (EPIC) [1]. EPIC integrates COTS component related
roles and activities into a RUP process. The iterative and evolutionary nature inherent
in EPIC allows developers to adjust the architecture and system design, as more
knowledge is gained about the operations of the COTS components.

Our investigation on COTS-based development process in Norwegian IT compa-
nies, however, revealed that the main COTS-based development process is to custom-
ize the traditional development process to account for use of COTS components [6].
In addition, in all our investigated projects, the project members decided the main
process before they started to think about using COTS components. To verify our
findings, we needed more representative samples. Therefore, our first three research
questions RQ1 to RQ3 are designed to examine the state-of-the-practice of the actual
development process in OTS-based projects.

- RQ1: What were the actual development processes in OTS-based projects?
- RQ2: Was the actual development process decided before the make vs. acquire

decision or after the make vs. acquire decision.
- RQ3: Who decided the actual development process?

2.2 COTS Component Selection and Evaluation Process

Based on case studies, researchers have proposed several COTS component selection
processes and methods. Some of the direct assessment processes, such as OTSO [5],
CAP [13], and CISD [8], assume that the requirements are fixed and select the COTS
components by comparing how well the COTS component candidates satisfy the
requirements. A formal decision-making process is usually used to select the “best”
COTS component [12]. The formal decision-making process usually includes three
basic elements: selecting evaluation criteria (factors), collecting and assigning values
to these criteria, and applying formal decision-making algorithms such as MAUT [9],
MCDA [11], and AHP [14]. However, both the study of Torchiano and Morisio [16]
and our exploratory study [6] showed that these formal selection methods were sel-
dom used. In fact, our exploratory study discovered two other popularly used selec-
tion processes. One is familiarity-based selection process and the other is Internet
search with trial-based selection process. In addition, our exploratory study con-
cluded that there are common new activities and that the possible variations are when
and how to perform them, especially when and how to select COTS components.
Therefore, research questions RQ4 to RQ6 are designed to investigate how OTS com-
ponents were selected.

- RQ4: What was the actual selection process used?
- RQ5: When was the OTS component selected?
- RQ6: What was the relationship between the selection phase and the project

context, such as the familiarities with the OTS component candidate and the
importance of the OTS component candidate?

3 Questionnaire Design and Sample Selection

The general questionnaire design, sample definition and selection, and data collection
procedures are reported in [4], [7]. This study extended the exploratory study in two

 A State-of-the-Practice Survey of OTS Component-Based Development Processes 19

dimensions. First, it included OSS components because they represent an alternative
to COTS components. Second, this study included much larger samples from three
countries - Norway, Italy, and Germany. In addition, the sample was selected ran-
domly instead of by convenience as in the exploratory study.

We have gathered results from 133 projects (47 from Norway, 48 from Germany,
and 38 from Italy) from 127 companies. In general, we selected one project from each
company. However, we selected more than one projects in three Norwegian IT com-
panies because those companies have many OTS-based projects and would like to
share more experience to this study. In the selected 133 projects, 83 used only COTS
components, 44 used only OSS components, and six used both COTS and OSS com-
ponents. Profiles of collected companies and projects are reported in [7].

4 Empirical Results

4.1 RQ1: What Were the OTS Component-Based Development Processes?

The first research question RQ1 is to investigate the actual development processes
used in an OTS-based project. In the questionnaire, we asked the respondents to de-
scribe their development process in detail, whereby the answers were then summa-
rized by different categories. The results are summarized in Figure 1 and show that
the waterfall, incremental, XP [18], German V-model [19], and prototyping model are
those mainly used in practice. Between these, the ‘incremental with prototyping’
model and XP was the most popular. The German V-model was also used widely in
Germany as the OTS-based development process.

4.2 RQ2: When Was the Process Decision Made?

The second research question RQ2 is to examine whether the actual development
process was changed, considering the use of OTS-components. In the questionnaire,
we asked the respondents to select whether the actual development process was de-
cided before or after the make vs. acquire decision or after that. The results show that

Fig. 1. The actual development process in the OTS-based project

20 J. Li et al.

most (75%) projects decided their main development processes before they started to
think about using OTS-components.

4.3 RQ3: Who Was Responsible for the Process Selection?

The third research question RQ3 is to identify the decision maker concerning the
actual development process. Within the questionnaire, we listed five options, such as
company/department rules, project manager, software architect, software developer,
and customer. The respondents were asked to select one or more from the options.
The answers reveal that in 29% of all projects the development process is predefined
by global company or department rules. In addition, concerning 14% of the remaining
projects the decision was at least affected by company/department rules. This trend is
especially obvious in Germany as the company rules dominated the development
processes in 65% of our studied projects.

4.4 RQ4: What Was the OTS Component Selection Processes?

The research question RQ4 is aimed at summarizing the OTS selection and evalua-
tion processes used in practice. Due to the length limitation of the questionnaire, we
could not ask the respondents to fill in the details of every OTS component in their
projects. Instead, they were asked to select one of the most important OTS compo-
nents and fill in the details for this component, named Comp.1. Information provided
for Comp. 1 was then used to investigate RQ5 and RQ6. To answer RQ4, we listed
six possible activities as named a) to f) in the questionnaire:

a. Searched Internet for possible OTS component candidates.
b. Got recommendation of possible OTS component candidates from the customer.
c. Got recommendation of possible candidates from a local colleague/OTS-expert.
d. Used a formal decision-making method to compare possible OTS component

candidates, e.g., with weighted evaluation criteria.
e. Limited possible candidates into 1-3 components, by reading litera-

ture/documentation.
f. Did “hands-on” try-out of 1-3 components, e.g., on a downloaded demo version.

The respondents were asked to fill in “yes”, “no”, or “do not know” for these op-
tions. The results are summarized in Figure 2 and show that activities a, c, e, and f
were those mainly used. Thus, the familiarity-based selection process (activity c) and
the Internet search, trial-based selection process (activity a, e and f) from the explora-
tory study are proved to be more popular than a formal processes (activity d) in gen-
eral. However, the further analysis with Chi-square shows that there are significant
differences of the activities b and c between countries. In Norway and Italy, very few
projects used the activity b. However, activity b was popularly used in Germany. In
addition, almost all German projects performed activity c, while it was used only in
half projects in Norway and Italy.

4.5 RQ5: When Were OTS Components Selected?

From the exploratory study, we concluded that OTS components are selected in
different development phases. Thus, research question RQ5 was postulated to

 A State-of-the-Practice Survey of OTS Component-Based Development Processes 21

investigate the selection phase of OTS component. The respondents were asked to
select one of five phases, ranging from pre-study to coding, as selection time. Figure 3
shows that OTS components were selected in the early stages, such as pre-study,
requirement, and overall design, in most projects, especially in Germany.

4.6 RQ6: What Was the Influence of the Project Context?

RQ6 aims at investigating the correlation between the project context and the OTS
component selection process. We investigated two project context variables. The first
is the project members’ familiarity with the Comp.1, measured by a five point Likert
scale (i.e. very little, little, some, much, very much). The answers were coded into 1
to 5 (1 means very little and 5 means very much). The second variable is the impor-
tance of Comp.1 in the system, measured by the contribution (in %) of ‘Comp.1’ to
the overall system functionality.

First, we investigated the correlation between the two context variables and the
phase in which Comp.1 was selected. The selecting phases are treated as an ordinal
variable and coded into the values 1 to 5 (1 means the pre-study phase and 5 means
the coding phase). The importance of Comp.1 was also treated as an ordinal variable,
although it is measured on a continuous scale. We then used the Spearman correla-
tion test in SPSS 14.0 to investigate the correlation. The results are shown in Table 1
and reveal that the selection phase of Comp.1 was weakly (with correlation coeffi-
cient value -.356) correlated with the project members’ familiarity with it. It means
that the project members preferred to decide the familiar OTS components in the early
stage of the project. However, there is no significant connection between the impor-
tance of an OTS component and the phase it was selected.

Second, we investigated the relationship between the two context variables with
the selection and evaluation activities performed. Since possible answers on the
selection and evaluation activity variable are “yes”, “no”, or “do not know”, we
treated the projects with “yes” and “no” answers as two independent samples and
then compared the mean differences of the two context variables. For the project

Fig. 2. What selection and evaluation actions were performed?

22 J. Li et al.

Fig. 3. When was the OTS component selected?

Table 1. The correlation between the selection phase and the context variables

What phase was Comp.1 selected Context variables
Spearman correlation
Correlation Coefficient -.356 Project members’ experience with the

Comp.1 Sig (2-tailed) .000*
The importance of the Comp.1 Correlation Coefficient -.132
 Sig (2-tailed) .150
* P < .05

Table 2. The relationship between selection activities and familiarity with the OTS component

Familiarity with Comp.1 Selection activities
Mann-Whitney Z Asymp. Sig (2-tailed)

a) 1263.000 -2.407 .016*
b) 1072.500 -1.622 .105
c) 1626.500 -1.043 .297
d) 964.000 -.533 .594
e) 1724.500 -.870 .385
f) 1481.500 -.913 .361
(Selection activities a) to f) are explained in Section 4.4)
* P < .05

members’ familiarity variable, we used the Mann-Whitney test in SPSS 14.0 to com-
pare their rank differences. Results, presented in Table 2, show that project members
will search the internet for a possible candidate, if there is no proper or familiar can-
didate at hand.

For the importance of Comp.1 variable, we used the independent T-test in SPSS
14.0 to compare mean differences, whereby the results are shown in Table 3. The
overall result is that there is no significant relationship between the selection and
evaluation activities performed with the importance of the OTS component.

 A State-of-the-Practice Survey of OTS Component-Based Development Processes 23

Table 3. The relationship between the selection activities with the importance the OTS component

Importance of the Comp.1 Selection activities
t-test (equal variance not as-
sumed)

Sig (2-tailed)

a) .379 .706
b) -.971 .337
c) .804 .424
d) -.436 .666
e) 1.543 .126
f) 1.096 .278
(Selection activities a) to f) are explained in Section 4.4)
* P < .05

5 How to Customize the OTS-Based Development Process

Concerning the conclusions drawn in another study [3], we agree that using OTS
components in system development is bearing potential danger, especially when using
unfamiliar OTS components. Although the risk driven processes proposed in [3] may
give benefits, results of RQ1 show, however, that most projects integrate OTS com-
ponents successfully with traditional processes, such as waterfall, incremental with
prototyping, XP, or V-model. Results of RQ2 show that most actual development
processes were decided before the decision of using OTS components was made. In
addition, results of RQ3 show that company rules pre-defined the main development
processes in many OTS-based projects. According to the results of RQ1 to RQ3, we
summarize the state-of-the-practice of OTS-based development processes into seven
different scenarios. The classification of the scenarios is based on the phase of the
make vs. acquire decision and the developers’ familiarity with the OTS candidates.

5.1 Scenarios of Planned OTS-Based Software Development

In these scenarios (see Figure 4), project members prefer to evaluate the possibility of
using OTS components right from the start. Due to the time-to-market, cost, or capac-
ity issues, project managers realize that it is difficult, impossible, or not cost-effective
to make everything from scratch. In these scenarios, the first step is to do a make vs.
acquire decision (see step A in Figure 4). In case project members decide not to use
OTS components, the development process will be the same as the non-COTS based
development. If project members decide to use OTS components, they then need to
decide the main development process (see step B in Figure 4). To decide the main
development process, main issues are the traditional risks in a project, such as the
stability of the requirements. One of the other issues is their familiarity with possible
OTS candidates. According to the project members’ familiarity with the OTS candi-
dates, we define three scenarios from scenario 1 to 3.

- Scenario 1 – planned OTS-based project with unfamiliar OTS candidates. In
this scenario, the project members prefer to use OTS component to provide cer-
tain functionalities of the system. However, they are not familiar with the OTS

24 J. Li et al.

candidate at all. To decide the main development process, the OTS relevant
risks, such as the quality of OTS components and the vendor’s support, should
be seriously considered. In addition, project members should pay attention to
other risks, which are not relevant to an OTS component but the overall project
(e.g., which process is more suitable for projects with unclear or unstable re-
quirements? Waterfall or an incremental with prototyping’ model?).

- Scenario 2 – planned OTS-based project with some familiar OTS candidates: In
this scenario, the project members have a certain experience on some of the
possible OTS candidates. However, there are still certain candidates that they
have never used before. In order to decide the main development process, the
issues are similar with those of the scenario 1.

- Scenario 3 – planned OTS-based project with familiar OTS candidates: In this
scenario, the project members are familiar with all possible candidate compo-
nents. When deciding the main development process the OTS relevant risks
are not as critical as in scenario 1 or 2. Other non-OTS relevant factors, such
as company rules or requirement flexibility may be used to decide the main
development process. In this scenario, the main development process can be
any, such as waterfall, incremental, or XP. It may not need to be changed be-
cause the project members are very familiar with the OTS component candi-
dates.

In our investigated projects, only 25% can be classified into scenario 1 to 3, be-
cause they decided their main development processes after they decided to use OTS
components. In these projects, 67% can be put into scenario 3, because they used
familiar OTS components.

The COTS-based development model in [10] illustrates the differences between
COTS-based development and traditional software development, such as new, re-
duced, or modified activities. The underlying assumption of this model is that the rate
or degree of using OTS components is fixed in the very early phases of a project and
that the main development process has to be modified accordingly. The model can
therefore be used as a reference in scenarios 1 to 3.

Fig. 4. Scenario 1 to 3

 A State-of-the-Practice Survey of OTS Component-Based Development Processes 25

5.2 Scenarios of Unplanned OTS-Based Software Development

In these scenarios (see Figure 5), the decision of using OTS component was not
planned or made in advance, i.e. there is no clear intention of using OTS components
in the early phases of such a project. Project members decide on the main develop-
ment process according to some non-OTS relevant factors, such as company rules and
requirement stability. Due to the time-to-market pressure or internal capability, pro-
ject members start to evaluate the possibility of using OTS components at certain
stages of the project. At an industrial seminar [17], several industrial participants
mentioned such conditions. According to the project members’ familiarity with the
OTS candidates, we classify three scenarios from scenario 4 to 6.

- Scenario 4 – Unplanned OTS-based project with unfamiliar OTS candidates: In
this scenario, the project members decided to use OTS components in a late
phase of the project, such as detailed design or coding. However, they do not
have any previous experience with the possible OTS candidates. Therefore,
the use of OTS components may bring several problems for the whole project.
They need a second risk-evaluation to investigate whether the development
process should be modified concerning the use of OTS components. For ex-
ample, in projects with pure waterfall processes, the project members may
need to add a short prototyping step to evaluate the OTS component and to ne-
gotiate the use of OTS component with their customer.

Fig. 5. Scenario 4 to 6

- Scenario 5 – Unplanned OTS-based project with some familiar OTS candidates:
In this scenario, the project members decided to use OTS components in a late
phase. However, they do not have previous experience with all OTS compo-
nent candidates. In order to decide the main development process, the issues
are similar with those of scenario 4.

- Scenario 6 – Unplanned OTS-based project with familiar OTS candidates: In
this scenario, although the project members decided to use OTS components
in a late development phase, they have enough experience on the OTS

26 J. Li et al.

component candidates or are able to hire a person with such experience. In
case the project members have used the OTS component many times before,
the OTS component can be regarded as comparable to in-house built compo-
nents. Although the use of OTS component is a little risky due to the same
reasons as described in scenarios 4 and 5, this scenario is less risky because of
using familiar OTS components. It may not be necessary to do major changes
to the current development process.

In our studied project, about 75% of them can be classified into scenario 4 to 6, be-
cause they decided their main development processes before they started to think
about using OTS components. In these projects, 65% used familiar OTS components
and therefore can be classified into scenario 6.

5.3 The Scenario of Semi-planned OTS-Based Software Development

This scenario is a mix of scenarios 1, 2, or 3 with scenarios 4, 5 or 6, whereby the use
of OTS components is planned for some parts of the system. The main development
process is decided according to the use of OTS components. However, in a late phase
of the project, the project member may need to add some unplanned OTS component
due to the same reasons as scenario 4, 5, or 6.

The EPIC approach [1], like the RUP, consists of four phases and each phase con-
sists of one or more EPIC iterations. The information of four spheres of influences,
such as stakeholders’ needs, architecture design, risk, and marketplace, was gathered
and evaluated in each iteration. The project management, customer requirements, and
system architecture will be adjusted according to the trade-offs of the four spheres of
influences. Since every iteration includes a complete sub-process to make the trade-
off decision and select the OTS component, it is more flexible and suitable to be used
as a reference in scenarios 4 to 7.

6 How to Select the OTS Components

The results of this study support our conclusion in the exploratory study [6], and
shows that the familiarity-based and internet search-based processes are frequently
used in practice. The results also confirm that OTS component selection can be per-
formed in different development phases (requirements, design, or implementation),
depending on the project context, especially on the familiarity with possible OTS
components, and/or the flexibility of requirements [6]. In addition, results show pro-
ject members aim at reusing familiar OTS components and selecting them in early
phases. In our study, we measured the importance of an OTS component by their
contribution on the functionality of the system. Although the results show no correla-
tion between the OTS component’s importances with the phase it was selected, we
still suggest project members to select OTS in the earlier phases, especially if the OTS
component has a tight coupling with other components.

In different scenarios shown in Section 5, different OTS component selection
strategies and processes can be used. In scenarios 1, 2, 4, 5, and 7, some unfamiliar
OTS component candidates are going to be used. The selection process for unfamiliar
OTS components can either be an internet search with hand-on trial-based, or a

 A State-of-the-Practice Survey of OTS Component-Based Development Processes 27

formal selection process, such as processes shown in [5], [8], [9], [11], [13], [14]. In
scenarios 3 and 6, all possible OTS component candidates have been used by the
project members, the selection process could mainly be familiarity-based.

In scenarios 1 to 3, the use of OTS component is well-planned. In general, the OTS
component will be selected in the early phase of the project in these scenarios. Select-
ing OTS component in the early phase can help to design the software architecture
with consideration on constrains of the OTS components. Therefore, it is easier
to avoid the mismatch between the OTS components and other components in the
system.

In scenarios 4 to7, the OTS components are usually be evaluated at a phase which
most of the other components are already integrated in the system. Since the goal is to
integrate the OTS component into the current system and to check its integration
thoroughly, integrate the demo version of the OTS component and do a hand-on trial
is necessary. In case the OTS component was selected in the very late stage of the
project, it is better to select a component that has a loose coupling with the other
components. OTS components tightly coupled with existing components may impose
a high number of changes onto the system.

7 Threats to Validity

To avoid possible threats to the construct validity of this study, we performed a pre-
test to verify the questionnaire. In addition, we use a lot of effort to ensure the repre-
sentative of the sample. Detailed discussion on other validities issue of this study are
reported at [4], [7].

8 Conclusion and Future Work

This paper has presented a state-of-the-practice survey on the process issues in OTS-
based development. We have studied 133 projects from Norway, Italy, and Germany.
The main findings are:

1. The actual OTS-based development process was the traditional process with
OTS-specific activities. The development process was dominated by the com-
pany/department rule instead of the decision of using OTS components.

2. The actual OTS component selection can be done in different phases. The main
evaluation processes are familiarity-based or Internet search with hands-on-trial-
based. The phase to select OTS component has relationship with the project
members’ familiarity.

3. The proposed software development process and OTS component selection
process need further investigation to be suited to different project contexts.

The main limitation of this study is that it is a state-of-the-practice survey. We are
going to perform more detailed case studies to get detailed information in projects
with different contexts. The intention is to deepen our understanding the process im-
provement in OTS component-based development and to verify our proposals.

28 J. Li et al.

References

1. Albert, C. and Brownsword, L.: Evolutionary Process for Integrating COTS-Based System
(EPIC): An Overview. Software Engineering Institute, Pittsburgh, (2002),
http://www.sei.cmu.edu/publications/documents/02.reports/02tr009.html.

2. Brownsword, L., Oberndorf, T., and Sledge, C.: Developing New Processes for COTS-
Based Systems. IEEE Software, July/August (2000), 17(4):48-55.

3. Boehm, B. W. and Abts, C.: COTS integration: Plug and Pray? IEEE Computer, Jan.
(1999), 32(1):135-138.

4. Conradi, R., Li, J., Slyngstad, O. P. N., Bunse, C., Torchiano, M., and Morisio, M.: Reflec-
tions on Conducting an International CBSE Survey in ICT Industry. Proc. of the 4th Int. Sym-
posium on Empirical Software Engineering, Noosa Heads, Australia, Nov. (2005) 207-216.

5. Kontio, J.: A Case Study in Applying a Systematic Method for COTS Selection. Proc. of
the 18th Int. Conf. on Software Engineering, Berlin, Germany, March (1996) 201-209.

6. Li, J., Bjørnson, F. O., Conradi, R. and Kampenes, V. B.: An Empirical Study of Varia-
tions in COTS-based Software Development Processes in Norwegian IT Industry. Proc. of
the 10th IEEE Int. Metrics Symposium (Metrics'04), Chicago, USA, Sept. (2004) 72-83.

7. Li, J., Conradi, R., Slyngstad, O. P. N., Bunse, C., Khan, U., Torchiano, M., and Morisio,
M.: Validation of New Theses on Off-The-Shelf Component Based Development. Proc. of
the 11th IEEE Int. Metrics Symposium (Metrics’05), Como, Italy, Sept. (2005) 26.

8. Tran, V., Liu, D. B., and Hummel, B.: Component Based Systems Development: Chal-
lenges and Lessons Learned. Proc. of the 8th IEEE Int. Workshop on Software Technology
and Engineering Practice, London, UK, (1997) 452-462.

9. MacCrimmon, K. R.: An Overview of Multiple Objective Decision Making. Proc. of the
Multiple Criteria Decision Making, University of South Carolina Press, (1973) 18-44.

10. Morisio, M., Seaman, C.B., Parra, A. T., Basili, V. R., Kraft, S. E., and Condon, S. E.: In-
vestigating and Improving a COTS-Based Software Development Process. Proc. of the
22nd Int. Conf. on Software Engineering, Limerick, Ireland, June (2000) 31-40.

11. Morisio, M. and Tsoukias, A.: IusWare: a Methodology for the Evaluation and Selection of
Software Products. IEE Proceedings-Software Engineering, June (1997), 144(3):162-174.

12. Ncube, C. and Dean, J. C.: The Limitation of Current Decision-Making Techniques in the
Procurement of COTS Software Components. Proc. of the 1st Int. Conf. on COTS-Based
Software Systems (ICCBSS’02), Orlando, FL, USA, Feb. (2002), LNCS Vol. 2255,
Springer-Verlag Berlin Heidelberg New York 176-187.

13. Ochs, M., Pfahl, D., Diening, G. C., and Kolb, B. N.: A Method for Efficient Measure-
ment-based COTS Assessment and Selection - Method Description and Evaluation Re-
sults. Proc. of the 7th IEEE Int. Software Metrics Symposium, London, England, Apr.
(2001) 285-297.

14. Saaty, T. L.: How to Make a Decision: The Analytic Hierarchy Process (AHP). European
Journal of Operational Research, (1990), 48(1): 9-26.

15. SEI COTS-Based Initiative Description. Software Engineering Institute, Pittsburgh,
(2004), http://www.sei.cmu.edu/cbs/cbs_description.html

16. Torchiano, M. and Morisio, M.: Overlooked Facts on COTS-based Development. IEEE
Software, March/April (2004), 21(2):88-93.

17. Li, J. Conradi, R. Slyngstad, O. P. N., Bunse, C., Khan, U., Torchiano, M., and Morisio,
M.: Barriers to Disseminating Off-The-Shelf Based Development Theories to IT Industry.
Proc. of the ICSE2005/MPEC workshop, St. Louis, Missouri, USA, May (2005), 1-4.

18. Kent, B.: Extreme Programming Explained: Embrace Change. (1999) Addison-Wesley.
19. German V-model: http://www.v-modell.iabg.de/#AU250

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 29 – 42, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Automating Integration of Heterogeneous COTS
Components

Wenpin Jiao and Hong Mei

Institute of Software, School of Electronics Engineering and Computer Science
Peking University, Beijing 100871, China

jwp@sei.pku.edu.cn, meih@pku.edu.cn

Abstract. Mismatches make COTS components difficult to be incorporated. In
this paper, an approach is presented to eliminate mismatches among COTS
components, which can truly consider COTS components as black boxes. In the
approach, only the assembly description of components is required, based on
which adaptors for resolving mismatches can be generated automatically. This
paper also described an agent-based GUI implementation of the approach.

1 Introduction

Appropriate use of commercial-off-the-shelf products (i.e., COTS) is one of the
remedies that might enable developers to acquire needed capabilities in a cost effec-
tive manner, and easy usage of COTS to interoperate properly within applications is
crucial for component-based software systems.

Currently, many existing commercial component-oriented platforms address the in-
teroperability of component-based software by using Interface Description Languages
(IDL). However, in component composition using a specific configuration, mis-
matches may occur when the assumptions that a component makes about other com-
ponents, or the rest of the system, do not match [16]. Even if the functionalities of
components are matched and signature problems are overcome, the components are
not assured of interoperating suitably.

First, at the component level, because of the ordering of exchanged messages and
of blocking conditions [19], the mismatching interaction protocols may result in dif-
ferent behaviors of components. For instance, the order of messages exchanged and
the sizes of data blocks transmitted between components may be different.

Second, at the architecture level, components at hand are usually supposed to sup-
port specified architectural styles and they may not interoperate properly in software
systems with constraints of other architectural styles [8][15]. For example, compo-
nents to be integrated based on method invocation may not be suitable to be directly
integrated into software systems using the event-based architectural style.

Third, at the application domain level, COTS components are often involved in dif-
ferent naming spaces and the names for the same data entities may be discrepant.

Ideally, for integrating heterogeneous COTS components, approaches should at
least satisfy the following requirements.

30 W. Jiao and H. Mei

• Resolve naming and structuring discrepancies among interoperating compo-
nents due to different ontologies of application domains;

• Enable components specific to different architectural styles to interact; and
• Incorporate components with mismatching interaction protocols.

In this paper, we adopt an agent-based approach to integrating heterogeneous
COTS components. The main contributions of the paper are as follows.

We put forward an approach to incorporating COTS components with mismatches
at different levels. Our approach neither limits the number of incorporating COTS
components nor requires knowing any detailed information about what interaction
protocols COTS components are supposed to support so that COTS components can
truly be considered as black boxes in integrations.

Second, we describe an automated way to generate adaptors for resolving mis-
matches at interaction protocol level. By using the generated adaptors, data block
mismatches and message-ordering mismatches can be eliminated automatically if
components are incorporable.

Third, we present an agent-based implementation of the approach, in which agents
can resolve the architectural style mismatches via transforming style specific interac-
tions into uniform ACL (agent communication language) based communications and
can automatically remove deadlocks potentially occurring in the interactions of COTS
components even if components are not incorporable.

In the following context, Section 2 discusses the incorporability of COTS compo-
nents and describes methods for eliminating mismatches involved in different levels.
Section 3 and 4 describes the agent-based approach and its implementation, respec-
tively. Section 5 discusses some related work and concludes our work.

2 Elimination of Mismatches

In our opinions, the premise that components can interact is that names can properly
be mapped between input data and output data and interactions can be transformed
from one architectural style specific to another style specific.

Definition 1. Incorporability. Components are incorporable if they satisfy the follow-
ing conditions.

1. There is a name mapping, in which all input data entities (including their in-
ternal ingredient) imported by components are imaged (mapped) to output
data entities exported by other components.

2. All style specific interactions can be transformed between different styles.
3. After names are properly translated and style specific interactions are well

transformed, the components are compatible at the protocol level.

Nevertheless, it is very difficult to obtain the semantics of names and infer the map-
ping between names automatically even though there have been some ontology tools
to specify names formally (e.g., [17]).

In addition, COTS components are usually only documented with the usage syntax
of their interfaces when they are released, whereas architectural styles that COTS
components are supposed to support are generally not specified explicitly.

 Automating Integration of Heterogeneous COTS Components 31

Therefore, in this paper, we put forward the notation of assembly for specifying the
interconnections of components, which describes the name mapping that components
use to transmit data along interconnection links, the architectural styles that compo-
nents support, and the intentions that components set up the interconnections.

By using the specifications of assemblies among components, we can implement
an automated approach to resolving name conflicts and transforming mismatching
architectural interactions.

2.1 Assembly Description of Components

In general, people know little about the interaction protocols of COTS components.
To provide a generic solution for incorporating COTS components, we will not make
additional assumptions about the information exposed by COTS components.

To describe the assembly of COTS components, we should first know what COTS
components participate in the assembly. For example, an assembly involving a com-
ponent playing the role of user and another component implementing the server can
be described as follows.

<Assembly>
 <COTS name=“User” />
 <COTS name=“Server” />
</Assembly>

Then we need (and just need) know how COTS components are interconnected. In
our opinions, connections among components are links for transporting data for dif-
ferent purposes, for instance, requesting services or calling methods. We assume that
each connection is only used for unilateral data transportation. For each connection,
there involve at least one source component and just one destination component and
there is an intention (or purpose) of establishing the connection. In the establishment
of a connection, the architectural style to which the source component is specific may
be different from that of the destination component.

For example, the user sends a message containing “username”, “email” and “pass-
word” to authenticate itself to the server. Meanwhile, the server calls procedure
“authUsr(usr, pwd)” to authenticate the legality of the user and returns “yes” for suc-
cessful authentication or else the reason for failed authentication (fig. 1).

User

Server

username, email, password

usr, pwd

yes | reason

result

Fig. 1. Assembly of Components

In the assembly, there are two connections, one transports {“username”, “email”,
“password”} for calling “authUsr(usr, pwd)” and the other returns the authentication
result. In the figure, arrows represent data links through which upside data block is
sent from the end to the head whilst the underside is being expected at the head. The
connections between the two components can be described in the XML as follows.

32 W. Jiao and H. Mei

<Assembly>
 <Connection>
 <connection-id> C_ID1 </connection-id>
 <source>
 <component-name> C1 </component-name>
 <data-block name = “D1”,
 type = struct {username, email, password}/>
 <style> message-based </style>
 </source>
 <destination>
 <component-name> C2 </component-name>
 <data-block name = “usr”, type = String />
 <data-block name = “pwd”, type = String />
 <style> procedure-call </style>
 </destination>
 <intention>
 <signature-ref> authUsr(usr, pwd)
 </signature-ref>
 </intention>
 <data-item-mapping>
 <mapping “C1.D1.username”, “C2.usr” />
 <mapping “C1.D1.password”, “C2.pwd” />
 </data-item-mapping>
 </Connection>
 <!-- other connections -->
</Assembly>

Each connection has a unique identity. Within a connection, there is more than one
source section. Each source section is related to a component and describes the data
block(s) exported by the component. Differently, there is only one destination section
that specifies the data block(s) imported to a destination component. In each source or
destination section, the architectural style used to export or import the data block(s) is
also required to be specified.

The intention section specifies what action the destination component will take af-
ter it receives the data exported by the source component(s). The intention can be
specified via directly referencing a signature defined in the component’s interface, for
instance, “authUsr(usr, pwd)”.

The mapping section specifies how exported data items will be used as imported
data items. In principle, for all expected (i.e., imported) data, there should exist the
corresponding data exported from the sources (or else default values should be of-
fered). Contrarily, for an exported data, it may not be expected by the destination so
there may not exist a corresponding imported data.

2.2 Compatibility of Components

As mentioned above, two components are considered to be interoperable if they are
compatible after naming discrepancies and architectural style mismatches have been
resolved. Furthermore, we say components are compatible if the executions of all
input actions occurring in the interactions are guaranteed, i.e., components can obtain
all of the required data (or arguments) before they provide services and can gain the
results after they request services.

 Automating Integration of Heterogeneous COTS Components 33

We can specify the interactions among components by using directed graphs, in
which actions are nodes and arcs represent orders of actions. For any action, arcs
fanning out from it will fan into other actions that should (or will) take place after it.
According to the graph theory, we can prove that components are compatible if there
is at least one action without fan-in arcs whenever actions happen in the interactions
among the components.

In our definition, we do not restrict the incorporability to be related to only two
components. In addition, we assume that components are distributed on different sites
and there are no troubles with sharing resources. Therefore, the occurrences of dead-
locks are merely due to interactions instead of resource contention.

Theorem 1. If components are incorporable, there must exist an additional compo-
nent (e.g., adaptor) that can incorporate the components together, i.e., the adaptor can
eliminate the data block mismatches and interaction protocol mismatches occurring in
the interactions of the components.

We will not prove the theorem due to the space limitation. Anywhere, adaptors can
automatically be generated for incorporating components.

Assume that naming conflicts and architectural style mismatches have been re-
solved by using the assembly specifications. Then the main tasks of the adaptor for
incorporating two components include 1) resolving data block mismatches and 2)
removing deadlocks occurring in the interactions.

To resolve the data block mismatches, we adopts a strategy by which the adaptor
disassembles intercepted data blocks exported from source components into atomic
data items (i.e., the atomic ingredients of the data block) and re-assembles related
atomic data items into expected data blocks imported by destination components.

To remove the deadlocks caused by synchronizations, we adopt a strategy using
the message buffer that can be accessed randomly and concurrently.

Suppose the name mapping among components P1, …, Pn, is M. Then, the adaptor
can be divided into three parts.

1. Disassembler. Intercept data exported by components, disassemble it into
atomic ingredients, and then rename them, for instance, d to M(d).

2. Buffer. Buffer the intercepted and disassembled data on one hand and then
wait for the Assembler to take away the data.

3. Assembler. Transfer the buffered data to components that are importing data.
To meet a component’s expectation for data, the adaptor first obtains data in-
gredients from the buffer, then assembles them into the expected data block
and at last transmits the block to the component.

The adaptor is actually defined as a composition of parallel finite automatons (FA).
Corresponding to every export action occurring in the assembly, there is an FA gener-
ated, in which steps are states and actions are labels causing the interaction transiting
from one step to another step.

For example, there are two components P={-(a), +(b), -(c)} and Q={-(b), +(a, c)},
in which +/- represents data input/output (fig. 2a). Obviously, there is a data block
mismatch and a deadlock between P and Q if the collaborative input/output actions
should be synchronized. The adaptor will be generated for incorporating the two
components as shown in fig. 2b.

34 W. Jiao and H. Mei

Adaptor

+(a)

Step 1

Step 2

Step 1

-(a)

P

-(a)

Step 1

Step 2

Step 4

+(b)

-(c)

Step 3

Q

-(b)

Step 1

Step 2

Step 3

+(a, c)

+(b)

Step 8

Step 9

Step 8

-(b)

+(a)

Step 5

Step 6

Step 5

+(c)

-(a, c)

Step 7

+(c)

Step 3

Step 4

Step 3

-(c)

P

-(a)

Step 1

Step 2

Step 4

+(b)

Q

-(b)

Step 1

Step 2

Step 3

+(a, c)
-(c)

Step 3

Legend: Order relation of steps within components Synchronization relation of steps between components

2.a. Interaction with mismatches 2.b. Adaptor for resolving interaction mismatches

Fig. 2. Resolving Protocol Mismatches

According to the above description, for any export action occurring in the assem-
bly, there must be a collaborative import action in the adaptor to accept the data com-
ing from the source component and transmit the data into the buffer implemented in
the adaptor. On the other hand, for any imported data block, if its ingredients have
been buffered in the adaptor when the corresponding import action is going to fetch
the data block, the import action will not be blocked. Therefore, if components in-
volved in the assembly are incorporable they will be able to be incorporated properly
via the adaptor.

As shown in the above example, because there is always at least one export action
taking place during the interactions between P and Q, the deadlock is removable by
using the adaptor (fig. 2b).

However, when components are not incorporable, deadlocks will be irremovable
by just using the generated adaptors. For example, suppose P={+(a), -(b)} and
Q={+(b), -(a)}, there is a deadlock between P and Q and the adaptor cannot remove it
because all finite automatons in the adaptor begin with import actions, too. To remedy
this limitation, we will discuss how to implement agents to discover and remove
deadlocks in the next section besides describing how to use agents to incorporate
components.

3 Incorporation Using Agents

To resolve the mismatches between COTS components, we need adequate semantic
information about components and their interactions so that we could transform style
specific interactions (SSI) into homogeneous communications and could use name
mappings for generating adaptors automatically. Therefore, we adopt an agent-based
approach to implementing adaptors to incorporate COTS components.

In a distributed computing environment, it will be unacceptable to implement cen-
tralized adaptors to incorporate COTS components. A reasonable way is to resolve the
mismatches locally and then interconnect COTS components together.

In our approach, the adaptor to incorporate components is partitioned into parts and
each part is locally attached to a component and takes charge of the component’s
interactions. The responsibilities of the part at component P’s side include:

1. Disassemble data blocks coming from P and send them out.
2. Buffer data received from other components.
3. Assemble data ingredients into expected blocks and forward them to P.

 Automating Integration of Heterogeneous COTS Components 35

The architecture by using agents to implement adaptors and incorporate distributed
COTS components can be depicted as follows (fig. 3), in which agents are locally
attached to the COTSs at the same sides.

AgentAgent

COTS

Interceptor

Adaptor

Assembly
Spec

COTS

 Legend: Style-specific Interaction ACL-based Communication Specification Information Bidirectional Transformation

Xformer

SSI

ACL Buffer

Disassembler

Assembler

Interceptor

Xformer

SSI

ACL

Adaptor

Buffer

Disassembler

Assembler

Assembly
Spec

Fig. 3. Architecture for Incorporation of COTS

The interceptors are responsible for 1) intercepting style specific interactions of
components, transforming into ACL messages and forwarding to the adaptors, and
inversely 2) receiving ACL messages from other agents, transforming into style spe-
cific interactions and interacting with the components. In addition, the interceptors are
also in charge of 3) obtaining the specifications of the assembly, including the archi-
tectural styles and name mappings, and providing the agents for generating the adap-
tors automatically.

The adaptors take charges of taking actions specified in the finite automatons,
which has been transformed into ACL-based communications.

As most agents do, our agents also use the FIPA ACL [14] as the agent communi-
cation language. In general, most of interactions among COTS components are to
transport the values of variables. “inform-ref” and “forward” are two of the most
frequently used performatives. “inform-ref” indicates a macro-action for the sender to
inform the receiver the value that corresponds to a referential expression; whilst “for-
ward” is used for the sender to ask the receiver to forward a message to another agent.

For example, an action involved in a connection is to send data block d from P to
Q, then the ACL message corresponding to the action can be expressed as follows.

(inform-ref :sender P :receiver Q
 :content (Connection-Identity, d, value of d))

For convenience, we name the interceptor and the adaptor at P’s side as intercep-
torP and adaptorP, respectively.

For transforming architectural style-specific interactions and executing the adaptors,
the agents will generate and trigger corresponding rules according to the specification
of the assembly.

3.1 Transforming Style-Specific Interaction

To guarantee the transformation automated, we assume that any exported data is sent
out for a unique intention. Thus, whenever an interceptor captures data out from a
source component according to the architectural style supported by the source com-
ponent, it can definitely make out where the data will be transmitted and what the
component intents to do.

36 W. Jiao and H. Mei

To transform bi-directionally between style-specific interactions and ACL based
communications, interceptors use a group of rules.

When an interceptor locating at the source component side captures an exported
data block from the component, it will trigger the following transformation rule.

Export action perceived → {
1. Extract the data block transported by the export

action;
2. Retrieve the data block in the assembly specifi-

cation and locate the connection in which the
export action is involved;

3. Compose an ACL message to forward the data block
to the destination component via the adaptor.}

For example, suppose interceptorP perceives an export action of P, which is in-
volved in connection C and is sending data D to Q. The corresponding ACL message
is constructed as follows.

(Forward :sender interceptorP :to adaptorQ
 :receiver adaptorP :content <C, D, value of D>)

When an interceptor locating at the destination component side receives an ACL
message from the adaptor, it will trigger the following transformation rule.

ACL message received → {
1. Extract the data block and the connection iden-

tity transmitted along with the ACL message;
2. Obtain the intention of the connection via look-

ing up the assembly specification;
3. Take actions to realize the intention by using

the received data according to the architectural
style supported by the destination component.}

For example, suppose the intention is to call a procedure using the received data as
arguments. Then the interceptor will make an invocation of the procedure.

3.2 Executing Adaptors

Since adaptors are composed of a group of parallel finite automatons, we implement
adaptors using multiple threads, in which each FA is executed via a thread and con-
trolled by a group of rules.

For an FA disassembling data, the corresponding thread uses the following rule.

ACL message from an interceptor received → {
1. Extract the data block transported along with

the message;
2. Disassemble the data block into ingredients and

rename them according to the name mapping speci-
fied in the connection;

3. Package every ingredient into an ACL messages
and send it out sequentially.}

 Automating Integration of Heterogeneous COTS Components 37

For example, when adaptorP receives the above message, it will first disassemble
D and then transmit D’s ingredients to adaptorQ sequentially.

(Forward :sender adaptorP :to interceptorQ
 :receiver adaptorQ :content <C, M(D), value of D >)

For an FA assembling data, the corresponding thread uses the following rules.

D’s ingredient is buffered in the adaptor’s buffer → {
1. Extract the ingredient from the ACL message.}

All of D’s ingredients are obtained → {
1. Assemble the ingredients;
2. Generate an ACL message containing the data

block and send it to the interceptor.}

For example, when adaptorQ receives a data block, it will generate the following
message.

(Inform-ref :sender adaptorQ :receiver interceptorQ
 :content <C, D, value of D >)

For the FA buffering ingredients, the adaptor will also implement an independent
thread to receive ACL messages and store them temporarily in a message buffer.

3.3 Removing Deadlocks

As we have mentioned that adaptors cannot remove all kinds of deadlocks. Therefore,
we had to seek help from agents.

Since all FAs in adaptors begin with import actions, the interactions among com-
ponents run into deadlocks must be because all actions currently occurring among
components are import actions, too. Therefore, once agents find that they do not re-
ceive any messages for a while in the following situations, they can assert that there
may be deadlocks occurring in the interactions.

1. An adaptor is blocked during accepting data ingredients in an FA assembling
data block.

2. For some connection, the adaptors have not ever received any related data.

In both cases, the source components may be blocked so it cannot provide data for
the destination component smoothly. In principle, a source component is blocked
must be because it is also a destination component involved in another connection.
Therefore, to break a deadlock (in fact, a waiting cycle), we need only let a compo-
nent involved in the deadlock obtain what it is waiting for to force the component to
get out from the waiting cycle. To achieve this, the agents will simulate source com-
ponents to generate blank data blocks so that some destination component would not
be stalled.

4 Implementation of the Agent-Based Approach

To make the description of the implementation more easily understandable, we first
describe an application system as follows.

38 W. Jiao and H. Mei

The system is designated to manage the dormitory information of students. When a
new student is enrolled, the system should allot an accommodation to the newcomer,
and while a student leaves, the system should de-allot the accommodation. In the
system, there are two tables involved: one records the information about students and
the other about the dormitories. These two tables are associated as follows (fig. 4).

Student

Name
Student-ID
Gender
Date of Birth
Department
Grade

Dormitory

Building
Room
Address
Postal Code

Reside in

Resident

Student-ID
Building
Room

Fig. 4. Association between Students and Dormitories

There are four distributed COTS components available for constructing the system:

• A general-purpose table editor. The editor is an executable program that im-
plements a GUI to edit relational data tables, including inserting new and de-
leting old records. The usage of the editor is specified as follows.

 EDITOR <table-name>

• A general-purpose table manipulator. It is implemented as a procedure and can
be called to update relational data tables, including inserting new and deleting
old records. The signature of the manipulator is specified as follows:

void MANIPULATOR(String table_name, String re-
cord_value, Integer operation);

record_value contains the values of all fields of a record of the table, in which
each field is a fixed length of string. operation indicates what manipulation the
procedure will do, for example, updating, inserting, or deleting a record.

• A domain-specific procedure for allotting the dormitory to a newcome student
according to the newcomer’s gender, department, and grade. The dormitory
information consists of the building and the room number.

void ALLOTTER(String student_id, Integer gender,
String department, Integer grade,String
*building_no, String *room_no);

• A domain-specific console. The console browses information about students
and their accommodations and calls Editor to edit students’ information.

In the system, there are four interconnection links among these components:

1. Console calls Editor to enroll (or de-enroll) students.
2. When Editor inserts a record into Student table (a student is enrolled), Allotter

will be triggered to allot an accommodation to the student.
3. After Allotter finishes the computation of allotting the accommodation, Ma-

nipulator will be called to insert a record into Resident table to store the ac-
commodation information.

4. When Editor deletes a record (a student leaves), Manipulator will be trig-
gered to remove the related accommodation from Resident table.

 Automating Integration of Heterogeneous COTS Components 39

Among these connections, interaction 1 and 3 are procedure-call based while con-
nection 2 and 4 are event-based and the architectural styles supported by the interac-
tions are mismatched with the styles supposed by the COTS components.

For implementing the system via integrating COTS components, we developed a
GUI (fig. 5) in the Java on the Borland JBuildertm platform to draw the assembly and
generate the XML-based assembly specification. The GUI will also generate source
codes for agent-based adaptors automatically. An adaptor is instantiated from an
agent framework conformed to the FIPA specification [14], which integrates a rule
engine for Java platform, Drools [9], using the Rete [13] algorithm to process rules.

Fig. 5. GUI of the COTS Integration Environment

After the assembly is specified, the resource codes of agent-based adaptors can be
generated automatically. For each connection, two agents are generated and reside
separately beside the two connected components. For each agent, it will intercept
interactions of its host component and resolve the mismatches of interactions.

For example, in the connection between Allotter and Manipulator (i.e., the A-M
conn), Allotter will call Manipulator after it finishes the computation of allotting the
accommodation. Because Allotter will offer data items such as table name, student id,
building number and room number separately, which are different from the parame-
ters required by Manipulator, when it tries to call Manipulator, Manipulator syntacti-
cally cannot be called. By using the intentions and the data item mappings specified in
the connection specification, the GUI can generate agents for eliminating mismatch-
ing interactions between Allotter and Manipulator. For example, the GUI will gener-
ate the code segments for the agent locating at the side of Manipulator as follows, in
which each segment may correspond to a behavior rule of the agent.

1. Define a collection of Boolean variables corresponding to those expected data
items. For example, if Manipulator is waiting for the table name, define
table_name_received to record the state of the receival of the table name.

40 W. Jiao and H. Mei

2. Initialize these Boolean variables. Initially, these variables are assigned with
false. However, if an expected data item is provided with a default value in the
name mapping section in the assembly specification, assign the corresponding
Boolean variable with true.

 table_name_received = false;
 student_id_received = false;
 building_no_received = false;
 room_no_received = false;
 operation_received = true;

3. Wait for data items from Allotter. The agent will frequently poll the buffer to
find out whether an expected data item arrives. Once the agent receives a data
item, it will mark the data item to indicate that the data item has been received.
For example, when the agent finds that an ACL message in the buffer contains
the table name, it will execute the following statements.

 msg = getACLMessage();
 if (msg.sender = “allotter”) {
 item_name = msg.getDataItemName();
 if (item_name = “resident_table_name”) {
 table_name_received=true;
 resident_table_name=msg.getDataItemValue();}}

4. Assemble data items into data blocks according to the name mapping if all
data items received, and then call Manipulator based on the procedure-call
style. In this code segment, operation is assigned with 1 by the GUI automati-
cally though Allotter does not send any value of operation out.

if (table_name_received && student_id_received &&
 building_no_received && room_no_received &&
 operation_received) {
 table_name = resident_table_name;
 record_value = student_id+building_no+room_no;
 operation = 1;
 manipulator(table_name, record_value, opertion);}

After the agents are generated, they will behave as follows.

1. When Console tries to call Editor to enroll or de-enroll students, the agent re-
siding beside Editor will capture the calling and fork a new process to exe-
cute Editor.

2. When Editor inserts a new student record into Student table, Console will dis-
patch an event out to notify that a new student is enrolled. When the agent
along with Allotter captures the event, it will first call Allotter to allot an ac-
commodation for the student and then call Manipulator to store the accom-
modation information into Resident table.

3. When Editor deletes a student record from Student table, Console will dis-
patch an event out to notify that a student leaves. And then, when the agent
along with Manipulator captures the event, it will call Manipulator to remove
the related accommodation information from Resident table.

 Automating Integration of Heterogeneous COTS Components 41

5 Related Work and Conclusions

To eliminate mismatches among COTS components, people usually implement wrap-
pers or adaptors while integrating them [12]. For instance, [4] and [10] explore means
of implementing connectors to wrap and integrate components. [2] defines connectors
as glue to connect components. [19] formally introduced the notion of adaptor as a
software entity capable of letting two components with mismatching behaviors inter-
operate. In [5], a methodology is defined for the automatic development of adaptors.
In [6], an adapter is presented to isolate, encapsulate, and manage a component's in-
teractions outside the component.

Meanwhile, some formal approaches are presented for detecting interaction mis-
matches [7][15], and some techniques are proposed for dealing with architectural
mismatches by means of analysis [8], removal [12] and tolerating [18]. In [3], an
architectural approach is described for detection and recovery of incompatible interac-
tions by synthesizing a suitable coordinator.

In addition, [11] presents an integration framework for adding notification and data
synchronization facilities to COTS tools so that they can be integrated as active soft-
ware components.

However, existing work is usually focused on behavior mismatches at the compo-
nent level, whilst some coping with architectural level mismatches are mainly con-
cerned with those special architectural constraints, called conceptual features [1].
Moreover, many approaches mainly discussed how two COTS components could be
incorporated or one COTS component could be integrated into a system.

In this paper, we presented a very simple approach to incorporating COTS compo-
nents with mismatches at different levels. To incorporate COTS components, we need
only ask to provide the assembly description of COTS components, which specifies
what interaction connections exist among components and why components build
those connections. Based on the assembly specification, adaptors for resolving mis-
matches among components can be generated automatically.

Nevertheless, in our approach there are still limitations to be overcome in our fu-
ture work.

First, we have assumed that every exported data was created for only one intention
in an assembly.

Second, our approach will generate two agents for each connection. When the
number of connections becomes larger, the scalability of the system may be affected
because of a large number of agents generated. At the next stage, we will conduct
more experiments to examine and improve the scalability of our approach.

Third, the transformations between style specific interactions and ACL messages
are ad hoc implemented in agents. In the future, we will explore how to build the
ontology of software architecture so that agents can make transformations automati-
cally based on the understanding to the ontology.

Acknowledgements

This work is partially sponsored by the National Basic Research Program of China
(973) (Grant No. 2002CB312003), the National Natural Science Foundation of China

42 W. Jiao and H. Mei

(Grant No. 60233010, 60303004, and 90412011), and the National High-Tech Re-
search and Development Program of China (863) (Grant No.2005AA112030).

References

1. Abd-Allah, A. Composing Heterogeneous Software Architectures, Doctoral Dissertation,
Center for Software Engineering, University of Southern California (1996)

2. Allen, R., Douence, R., and Garlan, D. Specifying and Analyzing Dynamic Software Ar-
chitectures. In Proceedings of 1998 Conference on Fundamental Approach to Software
Engineering, LNCS 1382 (1998) 21-37

3. Autili, M., Inverardi, P., Tivoli, M. and Garlan, D. Synthesis of “correct” adaptors for pro-
tocol enhancement in component-based systems. Proceedings of SAVCBS’04 Workshop
at ESEC/FSE (2004)

4. Balzer, R. and Goldman, N. Mediating Connectors. Proceedings of the 19th IEEE Interna-
tional Conference on Distributed Computing Systems (1999) 73-77

5. Bracciali, A., Brogi, A., and Canal, C. Systematic component adaptation. Electronic Notes
in Theoretical Computer Science, 66(4) (2002)

6. Chiang, C.C. The use of adapters to support interoperability of components for reusability.
Information and Software Technology, Vol.45, No.3 (2003) 149-156(8)

7. Compare, D., Inverardi, P., and Wolf, A. L. Uncovering architectural mismatch in compo-
nent behavior. Science of Computer Programming, 33(2) (1999) 101–131

8. Davis, L., Gamble, R.F., Payton, J. The impact of component architectures on interopera-
bility. Journal of Systems and Software 61(11) (2002) 31-45

9. Drools. http://drools.org/.
10. Ducasse, S. and Richner, T. Executable connectors: Towards reusable design elements. In

ACM Foundations of Software Engineering, LNCS 1301. Springer (1997) 483–500
11. Egyed, A. and Balzer, R. Integrating COTS Software into Systems through Instrumenta-

tion and Reasoning. Automated Software Engineering, Vol.13, No.1 (2006) 41-64
12. Egyed, A., Medvidovic, N., and Gacek, C. Component-based perspective on software mis-

match detection and resolution. IEE Proc.-Softw., 147(6) (2000) 225-236
13. Forgy, C.L. Rete: A Fast Algorithm for the Many Pattern/ Many Object Pattern Match

Problem, Artificial Intelligence 19 (1982) 17-37
14. Foundation for Intelligent Physical Agents, http://www.fipa.org.
15. Gacek, C. Detecting Architectural Mismatches During Systems Composition---An Exten-

sion to the AAA Model. Technical Report USC/CSE-97-TR-502, Center for Software En-
gineering, University of Southern California (1997)

16. Garlan, D., Allen, R., and Ockerbloom, J. Architectural mismatch: Why reuse is so hard.
IEEE Software, 12(6) (1995) 17–26

17. Gruber, T.R. A Translation Approach to Portable Ontologies, Knowledge Acquisition, vol.
5, no. 2 (1993) 199–220

18. de Lemos, R., Gacek, C. and Romanovsky, A. Tolerating Architectural Mismatches. In: de
Lemos, R., Gacek, C. and Romanovsky, A. (eds.), Architecting Dependable Systems,
LNCS 2677, Springer-Verlag, Berlin (2003) 175-194

19. Yellin, D. M. and Strom, R. E. Protocol specifications and components adaptors. ACM
Trans. on Programming Languages and Systems, 19(2) (1997) 292–333

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 43 – 57, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Domain Analysis Concept Revisited: A Practical
Approach

Eduardo Santana de Almeida1, Jorge Cláudio Cordeiro Pires Mascena1,
Ana Paula Carvalho Cavalcanti1, Alexandre Alvaro1, Vinicius Cardoso Garcia1,

Silvio Romero de Lemos Meira1, Daniel Lucrédio2

1 Federal University of Pernambuco and C.E.S.A.R. – Recife Center for Advanced Studies
and Systems, Recife, Brazil

{esa2, jccpm, apcc2, aa2, vcg, srlm}@cin.ufpe.br
2 Universidade de São Paulo
lucredio@icmc.usp.br

Abstract. Domain analysis has been identified as a key factor in the develop-
ment of reusable software. However, for domain analysis to become a practical
approach we need to understand the conceptual foundations of the process and
to produce a unambiguous definition in the form of specific techniques. This
paper presents a practical approach for domain analysis based on a well defined
set of guidelines and metrics. A preliminary industrial case study was per-
formed in order to identify the viability of the approach.

1 Introduction

Software reuse – the process of creating software systems from existing software
rather than building software systems from scratch [1] – is a key factor for improving
quality and productivity [2]. Through the years, several research works related to
software reuse, including company reports [3, 4, 5, 6, 7], informal research [8] and
empirical studies [9, 10, 11], have shown that domain analysis [12, 13] is a crucial
factor for reusability.

The term domain analysis was first introduced by Neighbors [14] as “the activity of
identifying the objects and operations of a class of similar systems in a particular
problem domain.” However, neither Neighbors’ nor many other works [12, 13, 15]
address the issue of “how to perform” domain analysis. These works focus on the
outcome, not on the process. This issue can also be observed in the software reuse
processes1 [15], which present gaps in the domain analysis steps.

Thus, improvements related to domain analysis are necessary in the reuse proc-
esses, which conduct it in an ad-hoc manner and success stories are more exceptions
than rules. The process of concept abstraction, from the identification of common
features, is usually considered as an exclusive human activity and commonly associ-
ated with experience. However, little is known about the process involved in deriving
and organizing such collections of abstract concepts. Gaining experience is a slow

1 This work has analyzed eleven reuse processes involving domain engineering and software

product lines. The processes correspond to the state-of-the-art in the area.

44 E. Santana de Almeida et al.

unstructured learning process. Similarly, domain analysis is a slow unstructured learn-
ing process that leads to the identification, abstraction, and encapsulation of objects in
a particular domain [12].

Typically, knowledge of a domain evolves over time until enough experience has
been accumulated and several systems have been implemented, so generic abstrac-
tions can be isolated and reused. In domain analysis, experience and knowledge are
accumulated until it reaches a threshold. This threshold can be defined as the point
when an abstraction can be organized and made available for reuse.

Thus, in order to truly exploit reusability in industrial environments, we need to
develop systematic approaches for domain analysis. In this context, our goal with
domain analysis, in concordance with Prieto-Diaz [12], (pg. 48) is: “to find ways
to extract, organize, represent, manipulate and understand reusable information, to
formalize the domain analysis process, and to develop technologies and tools to
support it.”

Our research is based on the following assumptions: i. problem domains exist; ii.
problem domains evolve gradually; iii. there are companies that need to develop large
numbers of similar systems within those domains; iv. there is expertise in building
systems in those domains; and, finally, v. reusers follow systematic approaches to
reuse. Our focus is on a practical approach that aims to: understand the conceptual
foundations of the domain analysis process; produce a unambiguous definition in the
form of specific techniques; and define a common notation for the process. Moreover,
the approach should present a systematic set of principles, guidelines, metrics, roles,
inputs and outputs.

2 A Practical Approach for Domain Analysis

2.1 Principles

The proposed approach is based on a set of Principles (P) in order to obtain a practical
and effective way to perform domain analysis.

P1. Scoping: project management activities for domain engineering and product lines
are sometimes called product line scoping. The main goal of scoping methods and
approaches is to identify the products that will belong to the product lines as well as
to define their major features.
P2. Metrics: metrics should be used whenever applicable, although not all the engi-
neering activities can be carried out with metrics. So, if metrics are not applicable, the
approach should provide guidelines rather than simply giving general principles.
P3. Flexibility: features defined in the feature model can be used to parameterize do-
main architectures and components in the future. Thus, components can be developed
almost free of design decisions by putting the features in the components as instantia-
tion parameters.
P4. Commonality analysis: the goal of commonality analysis is to identify which fea-
tures (requirements) are common to all applications of the domain.
P5. Variability analysis: the goal of variability analysis is to identify which features
(requirements) differ among the applications, and to determine the differences
precisely.

 The Domain Analysis Concept Revisited: A Practical Approach 45

P6. Variability Modeling: this principle concerns with the modeling of variation
points, variants, and their relationships.
P7. Traceability: traceability links, when well documented, can ensure the consistent
definition of the commonality and the variability of the domain throughout all assets
specified.
P8. Validation and documentation: one important consideration in any method or
process is related to activities for validation and documentation of the developed
assets, specially in the context of domains and product lines, where asset complexity
and volume are enormous.
P9. Systematic sequence of steps: the last principle, but not less important, says that
there must be a systematic sequence of steps, where the ordering of steps is logical
and easy to apply in practice.

We are aware that this is not a definitive set. However, we believe that the identi-
fied principles constitute a solid basis for future work.

In this context, the main goal of domain analysis is to identify commonalities and
variability of systems in a domain and represent them in an effective form. Our
approach for Domain analysis consists of three steps, using SADT notation [16]:
Domain Planning, Domain Modeling and Domain Validation. The next sections
present each step in details.

2.2 Planning

The first step in the approach corresponds to a preparation phase. One of the goals in
this step is to determine whether it makes good sense to invest in building a reuse
infrastructure in a given domain.

Initially, the domain analyst – a person who conducts the domain analysis process
– based on the chosen domain, performs the following activities:

• Stakeholder analysis: encompasses the identification of the stakeholders and
their roles within the process. A stakeholder is someone who has a defined in-
terest in the outcomes of the project;

• Objectives definition: corresponds to the definition of the stakeholder’s de-
sired objectives for the project;

• Constraint definition: comprehends the definition of the restrictions imposed
by the organization and by market conditions, making clear what is beyond the
process scope;

• Market analysis (if applicable): this non-trivial activity – which can be
performed or not, depending on costs, complexity and maturity of the organi-
zation in the domain – is the systematic research and analysis of the external
factors that determine the success of the domain in the marketplace. It involves
the gathering of business intelligence, competitive studies and assessments,
market segmentation, customer plans, and the integration of this information
into a cohesive business strategy and plan [17]; and

• Data collection: encompasses activities to elicit and examine existing knowl-
edge about the potential domain in focus. It includes the analysis of all
available documentation (project plans, user manuals, modeling, and data dic-
tionary), existing applications and knowledge from domain experts.

46 E. Santana de Almeida et al.

It is important to highlight that these activities are not sequential and can be per-
formed in parallel. After performing the above activities, the domain analyst starts to
identify the features and to define the domain scope. These tasks are organized in four
activities. The next sections present each activity in detail.

2.2.1 Map Application Candidates
This initial activity aims at identifying the characteristics that shall be supported by
the future domain architecture. Thus, firstly, the domain analyst, based on system and
stakeholder information, identifies the applications that might be supported by the
domain sequentially.

Three types of applications can be distinguished: existing applications (i.e., appli-
cations that have been developed prior to the start of the domain analysis process),
future applications (i.e., applications where the requirements are rather clear, but
development has not yet started) and potential applications (i.e., applications for
which no clear requirements exist yet, but are seen as relevant).

After understanding the relevant applications, the list of features is developed. The
use of features is motivated by the fact that customers and engineers often speak of
applications characteristics in terms of features that the application has and/or delivers
[18]. This list provides a description of the different characteristics and identifies
relations among them.

Identification of features involves abstracting domain knowledge obtained from
the domain experts and other documents such as books, user manuals, design docu-
ments, and source programs [19]. However, the volume of documents and informa-
tion to be analyzed tends to be too big in a domain. In this context, the guidelines (G)
defined initially by Lee2 et al. [19] (G1 and G3) can be very useful:

G1. Analyze terminologies used in the domain to identify features. In some mature
domains, experts usually use standardized terminology to communicate their ideas,
needs, and problems. Thus, using standard terms for the feature identification can
expedite communication between the domain analyst and information providers
(domain experts and end-users).

Lee et al. categorizes the features in a feature identification framework. This
framework organizes the features in four groups: capability, domain technology, im-
plementation technique, and operating environment.

Capability features are characterized as distinct services, operations or non-
functional aspects of applications in a domain. Services are end-user visible functional-
ity of products offered to their users in order to satisfy their requirements. Operations
are internal functions of applications that are needed to provide services. Non-
functional features include end-user visible application characteristics that cannot be
identified in terms of services or operations, such as presentation, capacity, quality
attributes, etc.

Domain technology features are domain specific technologies that the domain ana-
lyst or architect uses to model specific problems or to implement service or operation
features. These features are specific to a given domain and may not be useful in other
domains.

2 The guidelines originally defined by Lee et al. were proposed to software product lines.

However, in our approach, we adapt it to work with the domain vision.

 The Domain Analysis Concept Revisited: A Practical Approach 47

Implementation technique features are more generic than domain technology fea-
tures and may be used in different domains. They contain key design and implementa-
tion decisions that may be used to implement other features. Some examples are:
design patterns and architectural styles.

Operating environment features include domain contexts, such as computing envi-
ronments and interfaces with different types of devices and external systems.

We believe that organizations starting to explore domain analysis in their projects,
or in immature or unstable domains, should first concentrate just on capability fea-
tures. Next, after achieving improvements in domain knowledge and analysis, the
other kinds of features can also be used.

G2. Try to first find differences among existing applications in a domain and then,
with this understanding, identify commonalities. Applications in the same domain
share a high level of commonality [20]. Hence, the commonality space would be
larger to work with than the difference space, thus finding difference is much easier
than finding commonalities. So, the strategy is, initially, to identify the existing appli-
cations (running systems), and then list different features that characterize each one.
After this understanding, the identification of common features is more easily per-
formed.

G3. Do not identify all implementation details that do not distinguish between ap-
plications in a domain. A developer tends to enumerate all the implementation details
and identify them as features, even though there are no variations among them. But it
is important to note that a feature model is not a requirement model, which expresses
the details of internal functions. For this reason, we recommend that this activity
should be performed by a domain analyst, who will abstract implementation details.

At the end, the applications and features information are organized in the form of
an application map. In this map, rows and columns are used to represent features and
applications, respectively. Sometimes, it is common to divide a feature in a set of sub-
features, when there is a relationship between them; for example, the feature Search,
in a component repository domain, can be divided into five sub-features, such as:
active, passive, based on semantic, facets and keywords. The same can happen for
each sub-feature.

2.2.2 Develop Evaluation Functions
In this activity, based on the information that was previously produced, the domain
analyst refines and operationalizes the business objectives that are relevant to the
domain in the particular context.

This refinement is very important because initially (in the previous activity) the
objectives are identified in a manner that is too generic for being directly used. Thus,
our approach includes the concept of successively refining the business objectives
towards more operational evaluation criteria, as also used in PuLSE methodology
[21]. These criteria can be applied on a single application/feature combination. This
refinement has the advantage that an explicit and traceable relation between the busi-
ness objectives and the identified scope is established.

In this context, this activity starts when the domain analyst identifies the relevant
stakeholders and elicits their objectives. Next, in order to make the goal more precise,
a goal schema based on Goal Question Metric (GQM) [22] is used. The schema has
the form of <purpose><Issue><Object><Context>, such as Minimize the effort

48 E. Santana de Almeida et al.

needed for the development of new applications from the viewpoint of software engi-
neers in the company.

After defining the goal, questions are used to elicit additional information about
the objectives in order to capture them in a more effective way. Based on the objec-
tives and questions, the domain analyst develops or reuses evaluation functions,
which produces benefit and characterization functions. The benefit functions describe
the benefit of introducing a certain feature into the reuse infrastructure relative to a
certain business objective. The characterization functions are applied on single appli-
cations/features combinations and play a role that is analogous to metrics in the GQM
approach. Table 1 presents a result of this activity (Develop evaluation functions) in
the component repository domain.

Table 1. Develop evaluation functions

Objective To attend most of the domain applications, maximizing the
repository use and standardizing the characteristics that are
available in the applications

Questions 1. How to define if the repository support or not an applica-
tion?

2. How to evaluate the level of use from the repository by the
applications?

3. How to determinate the deviation of a characteristic of an
application in relation with the established pattern?

Characterization • Is characteristic c necessary for the application a?
- req(c,a)– 1:yes; 0:no

• Similarity of the characteristic ca with the standard char-
acteristic c in the application a
- sim(c,ca,a)– 1:equal the standard; 0.5:next to the
standard; 0:different of the standard

Benefit • Proximity of the characteristic in the applications in rela-
tion with the standard
- P(c,a)– req(c,a) x sim(c,ca,a)

• Distance of the characteristic in the applications in relation
with the standard
- D(c)– req(c,a) x (1 - sim(c,ca,a))

2.2.3 Characterize Applications
In this activity, the characterization functions are applied on the application map.
Usually this is done by stakeholders who provided the different objectives (e.g., the
project leader for development can be useful to estimate effort, while a marketing
expert can be useful to describe which features may be useful to gain market share),
or other qualified person. It is, basically, a knowledge elicitation task centered on the
characterization functions.

The difficulties that were found during knowledge elicitation for the characteriza-
tion functions lead to modifications into the application map and the evaluations
functions. Moreover, the scales used in the functions can also be changed. The infor-
mation resulting from these iterations is entered into the application map and leads to
the documented application map.

 The Domain Analysis Concept Revisited: A Practical Approach 49

2.2.4 Benefit Analysis
The last activity of the domain planning is very important. At this point the informa-
tion acquired is used to derive the scope definition. The first step is to identify the
adequate values for the benefit functions. This is done by applying the definition
functions on the values elicited for the characterization functions.

One important warning is related to difference scales. Some scales that are used for
the characterization functions can be nominal or ordinal, thus, its definition should
take this point in consideration, in order to allow arithmetic operations to be per-
formed on these values.

After values are assigned to the benefit functions, it is possible to determine the
scope that is aligned with the business objective. Some multi-objective decision tech-
niques, described in literature, can be useful for this proposal [23]. In our approach,
we use a weighting scheme to perform it.

Once candidate features are identified based on the described activities, these fea-
tures should be organized into a domain model. The details of this step are described
in the next section.

2.3 Domain Modeling

In the Domain Planning step, a domain was selected based on a strategic analysis of
the stakeholders’ interest on the process, which ensured a sufficient business case to
develop a domain model for the selected domain. The purpose of the Domain Model-
ing step is to fill in the content within the domain itself. This means a shift of atten-
tion from scoping issues to structural issues and conceptual elements within the
domain.

Thus, the resulting model should describe the commonality and variability within
the domain. Rather than building a model for a single application in the domain, or
even a generic model that may be applicable at a high level to a number of applica-
tions, the domain modeling task attempts to formalize the space of variations for indi-
vidual applications in the domain.

In this approach, the domain model is represented through feature models [24].
The domain analyst groups the features that were identified in the previous step in a
features model, a graphical AND/OR hierarchy of features, that captures logical struc-
tural relationships (e.g., composition and generalization) among features. Three types
of relationships are represented in this diagram: “composed-of”, “generaliza-
tion/specialization”, and “implemented by” [18]. Features may be “mandatory”, “op-
tional”, “or features” or “alternative”. Composition rules supplement the feature
model with information showing mutual dependency and mutual exclusion relation-
ships between variant features and variation point. It is used to verify the consistency
and completeness of the selected features. In our approach, we consider three types of
relationships (R):

R1. Variant Constraint Dependency. A variant constraint dependency describes a
relationship between two variants, which may be one of two types:

 Variant requires variant. The selection of a variant V1 requires the selection of
another variant V2 independent on the variation points the variants are associ-
ated with.

50 E. Santana de Almeida et al.

 Variant excludes variant. The selection of a variant V1 excludes the selection
of the related variant V2 independent on the variation points the variants are as-
sociated with.

R2. Variant to Variation Point Constraint Dependency. The variant to variation point
constraint dependency describes a relationship between a variant and a variation
point, which may be of one of the two types:

 Variant requires variation point. The selection of a variant V1 requires the con-
sideration of a variant point VP2.

 Variant excludes variation point. The selection of a variant V1 excludes the
consideration of a variation point VP2.

R3. Variation Point Constraint Dependency. A variation point constraint dependency
describes a relationship between two variation points, which may be one of two types:

 Variation point requires variation point. A variation point requires the consid-
eration of another variant point in order to be realized.

 Variation point excludes variation point. The consideration of a variation point
excludes the consideration of another variation point.

Lee et al. [19] defines two useful guidelines that can be used to organize features:
G4. Do not organize features to represent functional dependencies, like a function

call hierarchy, but organize features to capture and represent commonalities and
differences. Developers who are familiar with a structured development method often
confuse a feature model with a functional call hierarchy. Thus they tend to identify all
functions of applications as features and organize them similar to a functional call
hierarchy. However, features should be organized so that commonalities and variabili-
ties can be easily reorganized, rather than representing interactions among features,
like a function call hierarchy.

G5. If many upper-level features are associated with a lower-level feature through
the implemented-by relationship, reduce complexity of the feature model by associat-
ing the lower-level feature with the nearest common parent of its related upper-level
features. When upper-level features, in a feature model, are associated with several
lower-level features through the implementation-by relationship, the implementation
relationships between those features may be very complex. Since the primary concern
of feature modeling is to represent commonality and variability in a domain rather
than to model implementation relationships between features, complex relationships
can be reduced by associating the lower-level feature with the nearest common parent
of its related upper-level features. This guideline is useful in mature or stable domains
where domain and technology features are identified. But in domains where only
capability features are identified it is not applied.

Besides these guidelines, proposed by Lee et al., an important consideration (C) re-
lated to feature models must be considered:

C1. A feature model with AND-nodes at an upper level and OR-nodes at a lower
level usually indicates a high level of reuse opportunity. On the other hand, alterna-
tives (i.e., OR-nodes) at the upper level usually mean that applications in the domain
do not share much commonality in terms of services and functions provided by
 them. This indicates that the domain might not have much reuse opportunity at the
application level, although there might still be opportunities for reuse at low level.

 The Domain Analysis Concept Revisited: A Practical Approach 51

Additionally, alternatives (OR-nodes) at a lower level indicate different ways of de-
signing and implementing certain reusable information.

Once feature models are organized in a coherent structure composed of features,
common and variable points, relationships, and composition rules, the domain analyst
performs the domain validation.

2.4 Domain Validation

Before the domain model is ready for being used, it is necessary to validate and
document it; however, there are not many works in this direction. Addy [25] presents
a framework that extends verification and validation from an individual application
system to a product line of systems that are developed within an architecture-based
software engineering environment. Nevertheless, Addy’s work is very generic and
does not discuss its task systematically, which makes difficult its practical usage.

Thus, in our approach, in order to achieve the domain validation, the domain ana-
lyst performs the following activities (A):

A1. Document features. For this activity we use the template defined by Czarnecki
and Eisenecker [26]. In this template each feature consists of:

• Semantic description. Each feature should have at least a short description de-
scribing its semantics;

• Rationale. A feature should have a note explaining why the feature is included
in the model;

• Stakeholders and client programs. Each feature should be annotated with
stakeholders (e.g., users, customers, developers, managers) who are interested
in the feature and the client programs that need this feature;

• Exemplar applications. If possible, the documentation should describe features
with known applications implementing them;

• Constraints. Constraints are hard dependencies between variable features. Two
important kinds of constraints are mutual-exclusion constraints and required
constraints.

• Open/closed attribute. Variation points should be marked as open if new direct
variable subfeatures (or features) are expected. On the other hand, marking a
variation point as closed indicates that no other direct variable subfeatures (or
features) are expected; and

• Priorities. Priorities may be assigned to features in order to record their rele-
vance to the process.

A2. Check for synonyms. Once the semantic description has been defined, it is nec-
essary to analyze each feature in order to find and eliminate synonyms, i.e., variant
terms that appear to have the same domain-relevant meaning;

A3. Check for homonyms. As a complementary activity to the search for synonyms,
it is necessary to check each feature in order to find homonyms, i.e., the same literal
term used with different meanings in different contexts;

A4. Model Validation. After the features documentation, the check for synonyms
and homonyms, the domain analyst performs the model validation. This activity cor-
responds to the matching of the requirements that were expressed by stakeholders and
the domain model, in order to validate its completeness and accuracy; and

52 E. Santana de Almeida et al.

A5. Document the domain. The last activity of this step corresponds to the docu-
mentation of the domain. In this activity, we use the meta model defined in [27],
which consists of the following information:

• Domain description. Defines the responsibilities of the domain;
• Domain defining rules. Includes decisions criteria about the inclusion and ex-

clusion of domain membership and the logical relationships between these cri-
teria;

• Exemplar system selection. Denotes a set of systems in the scope where the
domain functionality occurs;

• Documentation. Describes a set of documents related to exemplar systems;
• Domain Context (Relationship). Describes the relation between the domain in

focus and other domains;
• Domain genealogy. Encompasses information about the evolution and depend-

encies among systems within a domain; and
• Feature. Defines a set of features described in a domain.

3 Case Study

In order to validate our approach, we performed an industrial case study, which we
analyzed from various view-points.

3.1 The Context

Our case study using the approach consisted of performing the domain analysis in
the domain of repository systems. This project is part of the Reuse in Software
Engineering (RiSE) project [28]. RiSE’s goal is to develop a robust framework for
software reuse, in conjunction with the industry, involving processes, methods,
environment and tools. In the project, the role of the RiSE group3 (researchers) is to
investigate the state-of-the-art in the area and disseminates the reuse culture. On the
other hand, the industry (and its project managers, architects, and system engi-
neers), represented by Recife Center for Advanced Studies and Systems4
(C.E.S.A.R.) is responsible for “making things happens” with planning, manage-
ment, and necessary staff and resources. Recently, C.E.S.A.R. won, from Brazilian
agencies, two important awards: best Innovation Institute and Research and Software
System Company.

In the case study, we analyzed nine repository systems and component managers.
The subjects of this study were one senior system engineer and one senior software

architect; however, the whole project (to develop our product line) includes: project
manager (1), architect (1), team leader (1), analyst (2), system engineer (9), quality
engineer (2), and configuration manager (1) and RiSE’s staff.

3 www.rise.com.br
4 Currently, this company has more than 650 employees and is in preparation to obtain the

CMMI level 3.

 The Domain Analysis Concept Revisited: A Practical Approach 53

3.2 The Hypothesis

In this study, the following hypothesis was defined:

• H1: The proposed approach provides useful guidance to the domain
analyst.

3.3 Analysis of the Results

Analyzing the results of the approach applicability, we conclude that the approach
offers considerable guidance through planning, modeling, and validation tasks. In the
planning, the following benefits could be identified:

• Guidelines. The use of features in domain analysis is a key aspect. However,
letting the process of feature identification and classification be performed in
an ad-hoc way can compromise the domain reusability. In our approach, this
problem is solved with the application of well-defined guidelines;

• Documentation. With the application map, the organization possesses a general
picture of the domain, which comprehends its features and the set of applica-
tions (existing, future, and potential). This documentation can be useful for dif-
ferent stakeholders, such as the domain analyst and business and market staff;

• Well-defined functions. Using the GQM approach, the functions are defined
according to the business objectives that were specified by stakeholders, which
results in a more focused scope and in the development of a reuse infra-
structure that conforms to organizational needs. Moreover, with the maturity of
the organization using the approach, a base of functions can be developed and
reused. On the other hand, the initial definition of the functions - a non-trivial
task - demands a initial learning;

• Scoping. One of the problems with the domain analysis approaches and reuse
processes [15] is the lack of support for the domain scoping activity. In our ap-
proach, we present a systematic way to achieve it, with inputs, outputs, guide-
lines and roles.

In the domain modeling task, the major benefit is the set of guidelines that can be
applied on feature models. At the end, in the domain validation, the key aspect is the
concern with feature and domain documentation.

Even with these benefits, the following drawbacks could be observed:

• Domain selection. In the approach, there is not an activity to determine if a
domain is sufficiently mature to develop reusable assets. We assume that this
characteristic can be initially defined by the organization. However, a better
solution must be investigated;

• Application existence. In our approach, we assume that there are applications
in the domain to perform the domain analysis process. However, in some situa-
tions the organization may not have applications of a specific domain. Thus,
this issue must also be considered; and

• Lack of tools. In this case, we used a combination of tools such as style sheets,
text editors, and tried others, such as modeling feature tools (FORM tool,

54 E. Santana de Almeida et al.

CaptainFeature5 and XFeature6). However, these tools presented lack of sup-
port in some activities (scoping, documentation) and did not permit integration
among them.

In this case study, about 70 features were identified in the repository systems do-
main, and the approach has proven to be useful and promissory.

4 Related Work

The domain analysis area is not new and some works in this area can be found. The
work described in [29] is close to our Domain Scope activity; however, the most im-
portant difference from our approach is that Debaud et al.’s work is directed to soft-
ware product lines. In a certain sense, the software reuse processes [15] served as an
initial inspiration to the approach we present here, mainly, in its weak and strong
points. However, others directions were also analyzed such as the works proposed by
Frakes et al. [30], Bayer et al. [31], Kim et al. [32], Mei et al.[33] and Moon et al. [34].

Frakes et al. define a method and a CASE tool for helping in the achievement of
systematic reuse through domain analysis. The aspect discussed in their work is the
use of a prototype to automate the domain analysis process. The tool is used to extract
knowledge from documents and source code and organize it to be reused. But, on the
other hand, the method does not present improvements in the domain analysis area,
since it does not discuss, for example, how to perform scope and validation domain,
or modeling activities.

Bayer et al. present the Customizable Domain Analysis (CDA) method, which is a
subset of the PuLSE methodology [21]. The CDA method was developed to be
adapted to the project needs and provide guidance to be systematically applicable. It
consists of three steps: refine scope definition, elicit raw domain knowledge, and
model domain knowledge. The problem with this method is that its steps are very
generic, lacking of details on how to perform it.

Kim et al. [32] propose a new direction in domain analysis with the use of goals,
scenarios, and features. Their approach aims at offering a systematic and concrete
method for identifying features and providing the rationale for the features and the
commonality and variability analysis. The method is interesting in the domain model-
ing task. However, the task of scoping and domain validation is not considered.
Moreover, the method does not systematically define inputs, outputs and roles, as in a
more effective domain analysis process.

Mei et al. [33] define FODM, a feature-oriented domain modeling method, which
explores FODA ideas. Moon et al. [34] propose a process of producing domain re-
quirements where commonality and variability are explicitly considered. These ap-
proaches are very interesting, mainly the second one. However, our work is more
complete due to the fact that we treat all the steps of domain analysis that are not
considered in Mei and Moon’s work. The first is mostly concerned with domain mod-
eling, and the second does not treat planning and validation.

5 http://sourceforge.net/projects/captainfeature/
6 http://www.pnp-software.com/XFeature/

 The Domain Analysis Concept Revisited: A Practical Approach 55

5 Concluding Remarks and Future Work

The domain analysis process is a key aspect for organizations to maximize the bene-
fits of software reuse. However, the existing approaches present gaps and lack of
support in some steps, difficulting their usage in an industrial environment.

In this paper, we present an approach for domain analysis to be performed in a
practical way. The approach is based on a set of guidelines, metrics, roles, inputs and
outputs. A preliminary case study was achieved and has shown the viability of using
the approach.

As future work, we are developing a more robust case study in conjunction with
the industry in order to refine the approach. Moreover, we are researching the domain
architecture design area to define the mapping between domain analysis and domain
design. Our goal is to define a domain architecture design process, which includes
methods to identify, specify, design, document, and package components from a prob-
lem domain.

Acknowledgements. We would like to thank the members of Reuse in Software En-
gineering Group (RiSE) at C.E.S.A.R. for valuable suggestions for improving this
paper. This research is sponsored by Brazilian Innovation Agency (FINEP (MCT/
FINEP/COMPGOV project).

References

[1] C.W. Krueger, Software Reuse, ACM Computing Surveys, Vol. 24, No. 02, June, 1992,
pp. 131-183.

[2] V.R. Basili, L.C. Briand, W.L. Melo, How Reuse Influences Productivity in Object-
Oriented Systems, Communications of the ACM, Vol. 39, No. 10, October, 1996, pp.
104-116.

[3] A. Endres, Lessons Learned in an Industrial Software Lab, IEEE Software, Vol. 10, No.
05, Sep., 1993, pp. 58-61.

[4] D. Bauer, A Reusable Parts Center, IBM Systems Journal, Vol. 32, No. 04, 1993, pp.
620-624.

[5] M.L. Griss, Software Reuse Experience at Hewlett-Packard, Proceedings of the 16th
ICSE, , Italy, May, 1994, pp. 270.

[6] M.L. Griss, Making Software Reuse Work at Hewlett-Packard, IEEE Software, Vol. 12,
No. 01, January, 1995, pp. 105-107.

[7] R. Joos, Software Reuse at Motorola, IEEE Software, Vol. 11, No. 05, September, 1994,
pp. 42-47.

[8] W.B. Frakes, S. Isoda, Success Factors of Systematic Software Reuse, IEEE Software,
Vol. 12, No. 01, January, 1995, pp. 14-19.

[9] D.C. Rine, Success Factors for software reuse that are applicable across Domains and
businesses, ACM Symposium on Applied Computing, 1997, pp. 182-186.

[10] M. Morisio, M. Ezran, C. Tully, Success and Failure Factors in Software Reuse, IEEE
Transactions on Software Engineering, Vol. 28, No. 04, April, 2002, pp. 340-357.

[11] M.A. Rothenberger, K.J. Dooley, U.R. Kulkarni, N. Nada, Strategies for Software Reuse:
A Principal Component Analysis of Reuse Practices, IEEE Transactions on Software
Engineering, Vol. 29, No. 09, Sep., 2003, pp. 825-837.

56 E. Santana de Almeida et al.

[12] R. Prieto-Diaz, Domain Analysis: An Introduction, ACM SIGSOFT Software Engineering
Notes, Vol. 15, No. 02, April, 1990, pp. 47-54.

[13] G. Arango, Domain Analysis – From Art Form to Engineering Discipline, International
Workshop on Software Specifications & Design, Pittsburgh, Pennsylvania, United States,
May, 1999, pp. 152-159.

[14] J. Neighbors, Software Construction Using Components, Ph.D. Thesis, Department of
Information and Computer Science, University of California, Irvine, 1981, pp. 75.

[15] E. S. Almeida, A. Alvaro, D. Lucrédio, V.C. Garcia, S.R.L. Meira, A Survey on Software
Reuse Processes, IEEE International Conference on Information Reuse and Integration
(IRI), USA, August, 2005.

[16] D. T. Ross, Structured Analysis (SA): A language for communicating Ideas, IEEE Trans-
action on Software Engineering, Vol. 03, No. 01, January, 1977, pp. 06-15.

[17] P.Clements, L. Northrop, Software Product Lines, Addison Wesley, USA, 2002, pp. 563.
[18] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, M. Huh, FORM: A Feature-Oriented Reuse

Method with domain-specific reference architectures, Annals of Software Engineering,
Vol. 05, January, 1998, pp. 143-168.

[19] K. Lee, K. C. Kang, J. Lee, Concepts and Guidelines of Feature Modeling for Product
Line Software Engineering, Proceedings of the 7th International Conference on Software
Reuse (ICSR): Methods, Techniques, and Tools, Austin, Texas, April, 2002, pp. 62-77.

[20] J. Coplin, D. Hoffman, D. Weiss, Commonality and Variability in Software Engineering,
IEEE Software, Vol. 15, No. 06, November/December, 1998, pp. 37-45.

[21] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen, J. DeBaud,
PuLSE: A Methodology to Develop Software Product Lines, Symposium on Software
Reusability (SSR), 1999, pp. 122-131.

[22] V. R. Basili, G. Caldiera, H. D. Rombach, The Goal Question Metric Approach,
Encyclopedia of Software Engineering, Volume II, September, 1994, pp 528-532.

[23] M. Mollaghasemi, J. Pet-Edwards, Making Multiple-Objective Decisions, IEEE Com-
puter Society, 1997.

[24] K. C. Kang, S. C. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson, Feature-Oriented
Domain Analysis (FODA) Feasibility Sudy, Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, 1990.

[25] E. A. Addy, A framework for performing verification and validation in reuse-based soft-
ware engineering, Annals of Software Engineering, Vol. 05, January, 1998, pp. 279-292.

[26] K. Czarnecki, U. W. Eisenecker, Generative Programming: Methods, Tools, and Applica-
tions, Addison-Wesley, 2000, p. 832.

[27] K. Schmid, S. Thiel, J. Bosch, S. Johnsson, M. Jaring, B. Thomé, Scoping, Eureka 2023
Programme, ITEA project, June, 2001, p. 67.

[28] E. S. Almeida, A. Alvaro, D. Lucrédio, V.C. Garcia, S.R.L. Meira, RiSE Project:
Towards a Robust Framework for Software Reuse, IEEE International Conference on
Information Reuse and Integration (IRI), USA, November, 2004, pp. 48-53.

[29] J. M. Debaud, K. Schmid, A Systematic Approach to Derive the Scope of Software
Product Lines, USA, International Conference on Software Engineering (ICSE), May,
1999, pp. 34-43.

[30] W. B. Frakes, R. Prieto-Diaz, C. Fox, DARE: Domain Analysis and reuse environment,
Annals of Software Engineering, Vol. 05, January, 1998, pp. 125-141.

[31] J. Bayer, D. Muthig, T. Widen, Customizable Domain Analysis, Proceedings of the First
International Symposium on Generative and Component-Based Software Engineering
(GPCE), Germany, September, 1999, pp. 178-194.

 The Domain Analysis Concept Revisited: A Practical Approach 57

[32] M. Kim, H. Yang, S. Park, A Domain Analysis Method for Software Product Lines Based
on Scenarios, Goals and Features, Tenth Asia-Pacific Software Engineering Conference
(APSEC), Thailand, December, 2003, pp. 126-136.

[33] H. Mei, W. Zhang, F. Gu, A Feature Oriented Approach to Modeling and Reusing Re-
quirements of Software Product Lines, 27th IEEE International Computer Software and
Applications Conference (COMPSAC), USA, November, 2003, pp. 250-256.

[34] M. Moon, K. Yeom, An Approach to Developing Domain Requirements as a Core Asset
Based on Commonality and Variability Analysis in a Product Lines, IEEE Transactions
on Software Engineering, Vol. 31, No. 07, July, 2005, pp.551-569.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 58 – 72, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Feature Driven Dynamic Customization of Software
Product Lines

Hassan Gomaa and Mazen Saleh

Department of Information and Software Engineering
George Mason University

Fairfax, Virginia 22030, USA
hgomaa@gmu.edu, mazensaleh@yahoo.com

Abstract. This paper describes a model driven development approach for soft-
ware product lines based on Web services, in which feature selection drives the
dynamic customization of the product line architecture and implementation to
derive the application. During product line modeling, feature and their depend-
encies are described in a feature model. The product line architecture is based
around a client/server pattern consisting of user interface objects interacting
with Web services. During application engineering, features are selected by the
application engineer and used to dynamically customize the product line archi-
tecture and implementation.

1 Introduction

The field of software reuse has evolved from reuse of individual components towards
large-scale reuse with software product lines [Clements02, Weiss99]. A software
product line (SPL) consists of a family of software systems that have some common
functionality and some variable functionality. Parnas referred to a collection of sys-
tems that share common characteristics as a family of systems [Parnas79]. Applica-
tions are derived from the product line architecture and components by incorporating
all the common features and some of the variable features.

Earlier papers and researches have described how this approach was carried out
before [Gomaa96, Gomaa99] and after the introduction of the UML [Gomaa02,
Gomaa04]. This paper describes how product line engineering can be carried out
for product lines based on Web Services [Deitel03], which can be customized dy-
namically at run time. After the product line architecture has been modeled and
implemented, dynamic customization can be carried out to derive the executable
application. This process is driven by the feature model developed earlier. The cus-
tomization uses white box reuse of the client user interface objects and black box
reuse of Web services.

2 Evolutionary Software Product Line Engineering

The Evolutionary Software Product Line Engineering Process [Gomaa04] consists of
two main processes, as shown in Fig. 1:

 Feature Driven Dynamic Customization of Software Product Lines 59

a) Product line engineering. A product line multiple-view model, which addresses
the multiple views of a software product line, is developed. The product line multi-
ple-view model, product line architecture, and reusable components are developed
and stored in the product line reuse library.
b) Application engineering. This process involves the configuration of target appli-
cations. A target application is a member of the software product line application.
The multiple-view model for a target system is configured from the product line
multiple-view model. The user selects the desired features for the product line mem-
ber and the application is derived from the product line architecture and source code.

Product Line
Engineering

Product Line
Reuse

Library

Application
Engineering

Product Line
Requirements

Product Line Multiple-View Model,
Product Line Architecture,

Reusable Component Types

Target System
Target System
Requirements

Unsatisfied Requirements, Errors, Adaptations

Fig. 1. Evolutionary Software Product Line Engineering Process

3 SPL Multiple View Modeling

During software product line engineering, a multiple-view model of the product line
is developed. The multiple-view model defines the different characteristics of a soft-
ware family [Parnas79], including the commonality and variability among the mem-
bers of the family [Clements02, Weiss99]. A multiple-view model is represented
using the UML notation [Rumbaugh04, Gomaa00] and considers the product line
from different perspectives. Product line requirements modeling consists of use case
modeling and feature modeling. Use cases and features complement each other. In
particular, use cases can be mapped to features based on their reuse properties.
Product line analysis modeling consists of static and dynamic modeling. Additional
models that are particularly useful for modeling Web Services product lines are user
interface navigation modeling, object interaction modeling, and activity modeling.
Design modeling consists of developing the component-based software architecture
[GomaaSaleh05]. This section describes the product line models that help particularly
with modeling Web Services and customizing the product line models.

3.1 Feature Modeling

The feature model [Kang90, Cohen98, Griss98] is the main driver for the design of
customizable software product lines. Software product line features are analyzed and

60 H. Gomaa and M. Saleh

categorized as kernel, optional, or alternative as given by the PLUS method [Go-
maa04], and depicted as UML stereotypes:

• Kernel: Feature that exists in all members of the product line.
• Optional: Feature that may or may not exist in a given product line member.
• Alternative: One of a group of related alternative features is selected for a

given SPL member.

Fig. 2. Feature Dependency Model

Fig. 2 is a sample feature model for a hotel product line. It shows the kernel, op-
tional, and alternative features in the product line. Feature groups can also be defined,
which place constraints on feature selection, for example by not allowing two alterna-
tive features to co-exist in the same application. The emphasis in feature analysis is on
the optional and alternative features, since they differentiate one member of the
family from the others. Consider the two alternative features, Conventional Room
Reservation and Residential Reservation; because they are in an exactly-one-of-
feature-group, one of these features must be selected for any given application. Block
Reservation is an optional feature, so it will be selected for some applications.

3.2 User Interface Modeling

Since this design method is based on a service-oriented architecture for the product
line, it is important to show the navigation between user interface screens. Each user
interface screen is supported by a user interface object, which is in turn associated
with one or more Web services. After receiving inputs from the user, the user inter-
face object interacts with the appropriate Web service.

Fig. 3 shows the system navigation from the user perspective. Each user interface
screen is supported by a user interface class, which is categorized as kernel, optional,
or alternative. Each class is depicted with two stereotypes, the role stereotype is
<<user interface>> and the reuse stereotype, which is <<kernel>>, <<optional>>, or
<<variant>>. The navigation model depicts the user interface classes that can be
accessed from a given user interface class. Consider the realization of the features

 Feature Driven Dynamic Customization of Software Product Lines 61

described in the previous section. From the Main Reservation kernel user interface
class, either the Room Reservation variant class or Residential Reservation class can
be reached, as well as the optional Block Reservation class. Based on the features
desired for a given product line member, all kernel UI classes will be selected, some
of the optional UI classes will be selected, and a choice is made among variant UI
classes. Each user interface object interacts with relevant web services, which is
shown in the dynamic model, as described in Section 3.3. The details of how a given
user interface object can traverse to its neighbors is addressed by the activity model-
ing described in Section 3.4.

Fig. 3. User Interface Navigation Model

3.3 Dynamic Interaction Modeling

Each use case is supported by a user interface object, which is in turn communicates
with one or more Web services. Fig. 4 is a communication diagram for the Room

Fig. 4. Communication Diagram – Reserve single room

62 H. Gomaa and M. Saleh

Reservation user interface object, which processes a reservation for a single room.
This requires 3 web services: AvailabilityWS, CreditWS, and ReserveRoomWS. The
user interface object accepts the user’s information and directs the input to the appro-
priate web service as shown in Fig. 4.

3.4 Activity Modeling

The activity diagrams, in the SPL Service-Oriented approach, describe the workflow
of interactions between the user interface objects and web services, based on events
initiated by the user. Workflows have two major tasks:

• Invoke web services: Workflows show the sequence in which web services
methods are called for processing a complete event.

• Invoke other user interfaces: Workflows show the navigation pattern in
which other user interfaces are invoked.

The workflow for the SPL Service-Oriented architecture is customized during ap-
plication engineering. Fig. 4 shows a customizable activity diagram for the Main
Reservation kernel user interface object. As given by the feature model, Residential-
Reservation UI and Room Reservation UI are mutually exclusive alternatives, where
only one of them can be invoked by the user. During customization, a path will be
selected for the application to identify which GUIs or web services will be invoked.
Feature conditions are used for this purpose, where a feature condition is true if the
feature is selected and false if not. For example, [feature = RoomReservation] and
[feature = RoomReservation] are two feature conditions used in the activity diagram
of Fig. 5 to show the mutually exclusive feature decisions in the workflow. Similarly
the optional Block Reservation user interface is only provided if the Block Reserva-
tion feature condition is true. The customization of workflows is described later.

4 Dynamic Customization of Software Product Lines

After the product line architecture has been modeled and implemented, dynamic cus-
tomization can be carried out to derive the executable application. This process is
driven by the feature model developed earlier. The approach differs from other feature
driven approaches [Gomaa96, Gomaa99, Griss98] in that the customization is done at
run-time, However, the customization uses white box reuse of the client user interface
objects and black box reuse of Web services.

The Dynamic Client Application Customization (DCAC) approach is based on the
customization of client user interface objects at system run time based on the features
selected for the application and values of parameterized variables. Fig. 6 shows a
conceptual overview of the approach. It consists of the customizable SPL system
architecture and the SPL environment.

The customizable SPL system architecture in Fig. 6 is based on the client/server
architectural pattern, where the client application contain only user interface objects
and a customizer object, and the server application contain all web services and data-
base support.

 Feature Driven Dynamic Customization of Software Product Lines 63

Customize

Invoke
Residential

Reservation UI

Invoke Room
Reservation UI

Accept user
request

Invoke Block
Reservation UI

[feature=BlockReservation
AND BlockReservation is

selected]

[feature=ResidentialReservation
AND ResidentialReservation is

selected]

[exit]

[feature=RoomReservation
AND RoomReservation is

selected]

Fig. 5. Customizable Activity Model

Fig. 6. Conceptual overview of DCAC approach

The software product line environment in Fig. 6, which is based on the PLUS
method [Gomaa04], shows a conceptual overview of the approach from the SPL
engineering phase to application engineering phase, as follows:

64 H. Gomaa and M. Saleh

• SPL engineering phase:
- SPL feature editor: Allows users to create a feature dependency model

and define feature relations, create parameterized variables for each
feature, and link each feature to related specifications, designs, test pro-
cedures, and in particular component implementations.

• Application engineering phase. The following components are based on con-
cepts and tools developed earlier [Gomaa96, Gomaa99]:
- Feature selector: Allows users to select desired features, and enters value

of parameterized variables.
- Consistency checker: This component is part of the feature selector.

When a feature is selected, the consistency checker is invoked to verify
selection by consulting the feature dependency model to ensure consistent
feature selection.

- Customization file generator: This component is responsible for generat-
ing a customization file that is required for the dynamic customization of
client applications at system run time.

- SPL model database: Contains feature model, feature relations, analysis
model, design model, component implementations, and parameterized
variables.

- Customization file: Contains feature name, feature selection status
(true/false) and values of parameterized variables.

The customizable SPL architecture uses the customization file produced in the
application engineering phase to customize a target system at run time. The cus-
tomizer object (Fig. 5) reads the customization file and stores all customization
information in the customizer object’s local storage (arrays, data table, etc.) to be
used for customizing the client application user interfaces and their workflows.
User interfaces are customized by enabling or disabling graphical user interface
buttons, and by setting appropriate display variables. Workflows are customized
by making decisions on which user interface to call or which web service to
invoke.

The idea behind the DCAC approach is the development of dynamic client applica-
tion that can be customized at system run time. The DCAC approach has two main
processes, SPL Customization and Target application interaction.

4.1 SPL Customization

This step involves selecting desired optional and alternative features to be included in
the target system. The feature selector component provides a capability to allow
feature selection from a SPL model and run consistency checks to verify feature se-
lections. Once features are selected, selection information will be stored in the cus-
tomization file by the customization file generator. The dynamic client application is
customized by reading the customization file at run time.

 Feature Driven Dynamic Customization of Software Product Lines 65

Fig. 7. SPL customization sequence diagram

The following scenario (Fig. 7) depicts the customization process of a target
system:

• Application engineer selects desired features for an application using the fea-
ture selector.

• Consistency checker verifies feature selection, using the feature model in the
SPL model.

• Generate a customization file to be used by the client application for dy-
namic customization.

4.2 Target Application Interaction

The Dynamic Client Application Customization approach divides the interactive ap-
plication into three components, Customizer component, User interface component,
and Web Service component.

Customizer component contains all customization information for a single target
system. At run time, the customizer object reads the customization file and stores all
customization information in the customizer object’s local storage (arrays, data table,
etc.) to be used for customizing the client application user interfaces and their work-
flows. Customization information consists of enabled or disabled features and param-
eterized variables.

User interface component is responsible for accepting input from users and allow-
ing invocation of possible service requests. It involves the sequencing of web services
invocation and handling of message communication based on the customizable work-
flow. It is also responsible for displaying results to users originating from the web
service component.

Web Service component is a collection of functional methods that are packaged as
a single unit and published in the Internet, Intranet, or Extranet in a private or public
UDDI for use by other software programs, in this case the user interface component.

Once the target application features are selected in the SPL customization step, the
application will be ready for execution. The application interaction process describes
the two steps that occur at execution time: initialization of the customizer object and
run time customization.

Step 1: Initialization of the customizer object at program startup (Fig. 8):

• Starts main client application program.

66 H. Gomaa and M. Saleh

• Customizer object is invoked at main client application program startup.
• Customizer object reads customization information once from the customi-

zation file that is generated by the customization file generator.
• Customization information can be read by all user interface objects through

the customizer object.

Fig. 8. Initialization of customizer object – sequence diagram

Fig. 9. Customization of user interface – sequence diagram

Step 2: Run time customization of user interface objects. It involves two phases:
customization of user interface at run time and interaction of user interface objects
with web services (Fig. 9).

Customization of user interface at run time
• User invokes a user interface.
• User interface requests customization information from customizer object.

 Feature Driven Dynamic Customization of Software Product Lines 67

• User interface reads the customization information to:
- Customize user interface components
- Define appropriate calls to web services based on selected features.
- Define appropriate calls to other user interface objects.
- Update parameterized variables.

Customization is based on feature selection information stored in the cus-
tomization file.

User interface and web service interaction
• User requests an activity by entering input data and clicking a button.
• User interface object passes the activity request and input data to a web ser-

vice method(s).
• Web service processes the request and passes the results to the user interface

object. A web service may also request services from other web services.
• User interface object displays results received from web service.

5 Development of the DCAC Approach

This section describes in more detail the dynamic customization of a product line with
the DCAC approach, illustrated by two examples from the hotel software product
line, the Main Reservation User Interface and the Reserve Room User Interface. The
first example shows how alternatives and optional features are treated in the source
code, while the second example shows how a service request is performed using web
services. Both examples explain the transition from design into implementation.

The customizable activity diagram of Fig. 5, described in section 3.4, shows a cus-
tomizable activity diagram for the MainReservation user interface. This diagram
shows ResidentialReservation UI and RoomReservation UI as mutually exclusive
alternatives where only one of them can be invoked by clicking the single reservation
button of MainReservation user interface. (The Consistency Checker ensures that one
and only one of these alternatives is chosen at feature selection). BlockReservation
UI, on the other hand, belongs to an optional feature. It will be either enabled or
disabled based on whether the BlockReservation feature is selected by the user.

The customizable SPL application uses the customization file generated in the ap-
plication engineering phase to customize a target system, described in section 4.1. The
customizer object reads the customization file once and stores all customization in-
formation in the customizer object’s local storage (arrays, data table, etc.) to be used
for customizing the client application user interfaces and their workflows. The Main-
Reservation UI is customized by reading the feature selection and the value of param-
eterized variables from the customizer object to enable or disable GUI buttons and set
appropriate display variables. Its workflow is customized by setting features to true or
false and applying feature condition settings to user interface calls and web service
invocations, as described in section 4.2.

Fig. 10 shows the actual implementation of the activity diagram depicted in Fig. 4.
It shows how the MainReservation UI object can be customized at run time and how
it interacts after the dynamic customization.

68 H. Gomaa and M. Saleh

Fig. 10. Run time customization - Main Reservation UI

Customization of client application at run time:
• Object MainReservation is customized by reading the feature selections

stored in the customizer object and storing them in local variables, where
they will be used throughout by the MainReservation object. Each feature se-
lection is are set to Y or N, depending on whether the feature is selected or
not. Local feature variables roomRes, residRes, and blockRes store the
RoomReservation, ResidentialReservation, and BlockReservation feature
decisions respectively, which are set to Y, N, and Y in Fig. 10.

• During the customization process, optional GUI button Block Reservation is
created if blockRes is equal to Y and ignored otherwise. In Fig. 10, because
the Block Reservation feature is True, the GUI button is displayed, as
given by:

 if (blockRes == “Y”)
 // Create block reservation button
 blockRes_button.visible = true;

• During the customization process, the parameterized variable MainResTitle
is read from the customizer object to set the appropriate header title of the
MainReservation user interface.

 MainResUITitle.Text = Cst.varSelection(MainResTitle);

User interface object interaction:
After the dynamic customization process is complete, the MainReservation user inter-
face is ready to accept user input.

 Feature Driven Dynamic Customization of Software Product Lines 69

• If Single Reservation button is invoked, either ResidentialReservation UI or
RoomReservation UI will be called, depending on whether RoomReserva-
tion feature or ResidentialReservation feature is selected. Based on the fea-
ture selections in Fig.10, the former will be selected.

if (roomRes == “Y”)
 // display RoomReservation UI
 else if(residRes == “Y”)
 // display ResidentialReservation UI

• If Block Reservation button is enabled and invoked, BlockReservation UI
will be called.

private void blockRes_button_click()
{
 // display BlockReservation UI
}

• Since MainReservation UI has no service request to process, there will be
no web services involved at this user interface.

The second example shows how a service request is processed in the RoomReserva-
tion UI. Once the RoomReservation UI is invoked, it initiates the dynamic customiza-
tion process, described in the previous example. The user interface is now ready to
accept user input and service requests. For the illustration, Make Single Reservation
Service Request is explored.

Fig. 11. Activity Diagram – RoomReservation UI

Fig. 11 is an activity diagram showing the workflow of processing a single reserva-
tion (Reserve button clicked).This interaction sequence follows that described in Sec-
tion 3.3 and illustrated in Fig. 4:

70 H. Gomaa and M. Saleh

• Customize RoomReservation UI object
• Accept user input that is required to make a single reservation, such as name,

address, duration, and credit card, etc.
• Accept user request to process a single reservation.
• RoomReservationWS will be invoked (Fig. 4). Web service method Re-

serveRoom() will process the request.
• Web service method ReserveRoom() will invoke AvailabilityWS web ser-

vice and call SetSingleAvailability() method. This method will attempt to
update the room availability list in the database.

• Results will be returned to RoomReservation UI object.
• A confirmation message or a room unavailable message will be displayed to

the user.

Public class RoomReservation
{
 public RoomReservation()
 {

 // Display ALL GUI components
 // fields: reservationNo,
 // Name, Address, arrivalDate, days , CC
 // MessageField
 }

 private void Reserve_button_click()
 {
 bool availabilty;
 int res No ;

 ReserveCon.ReserveRoomeWS res = new ReserveCon.ReserveRoomeWS();
 AvailbilityCon.AvailbilityWS av = new AvailbilityCon.AvailbilityWS();

 resNo = res.ReserveRoom(Name, Address, arrivalDate, days , CC);

 if (resNo != “”)
 reservationNo.Text = resNo ;
 else
 MessageField.Text = “Reservation not available”

 }

Room Reservation UI

Check-in
Room

Check-out
Room

Cancel
Room

ReserveRoom WS

Reserve
Room
Modify
Room

Display
Confirmation

info

Display Not
available
message

[not available]

[available]

Call
RoomReservationWS.

ReserveRoom()

SetSingle
Availability
SetRange
Availability

Availability WS

Call ReserveRoom WS and

receives reservation number

Display reservation number

Display “not available”

message

Workflow for Reserve button

C
ode m

apping to w
orkflow

C
al

l t
o

Av
ai

la
bi

lit
y

W
S

Fig. 12. Implementation of RoomReservation UI object

Fig. 12 is an implementation sample of the activity diagram for the RoomReserva-
tion UI object, depicted in Fig. 11:

• RoomReservation user interface object is responsible for all communication
with RoomReservationWS methods. It passes input parameters entered by
the user, through the graphical user interface, and calls ReserveRoomWS
web service invoking ReserveRoom() method.
ReserveCon.ReserveRoomWS res = new ReserveCon.ReserveRoomeWS();
resNo = res.ReserveRoom(Name, Address, arrivalDate, days , CC);

• ReserveRoom() web service method of the ReserveRoomWS web service
processes the entire service request. A web service may call one or more web

 Feature Driven Dynamic Customization of Software Product Lines 71

services methods. In this case, SetSingleAvailability() method is invoked
from the AvailabilityWS web service.

• ReserveRoom() method returns a numeric reservation number, which is
stored in the local variable resNO of the RoomReservation user interface and
the database.

• RoomReservation user interface displays results received.
• Either reservation number or a room unavailable message is displayed to the

user.

6 Discussion and Conclusions

The feature driven dynamic customization approach uses white box reuse of the client
user interface objects and black box reuse of Web services. User interface objects
have feature dependent code and feature based decisions, which dictate how the user
interface code is tailored at runtime. Thus the graphical user interface and invocation
of web services is dynamically modified corresponding to the features selected. Black
box reuse of Web services is easier to manage; kernel web service components are
always used, whereas optional and alternative web service components are invoked
based on feature selection. White box reuse of client user interface objects is based on
feature conditions and more easily managed since these objects are developed directly
by the user organization.

Dynamic customization at run-time has several advantages over the more usual
static customization for every member of the product line. First, there is only one code
base, which incorporates all features, greatly simplifying the version control problem.
Second, the code is only compiled once, instead of once for each application.

The disadvantages are greater code overhead, although for most product lines the cost
of additional storage can be tolerated, and greater computation time to execute feature
based decisions, which is also tolerable providing the applications are not time critical.

The feature driven customization approach was validated by developing two prod-
uct lines, the hotel product line and a frequency management product lines. Both
product lines were modeled using the PLUS method and implemented in C# in Mi-
crosoft Visual Studio .NET. For each product line, at least two applications were
derived and tested using conventional approaches.

This paper has described an integrated model driven development and feature
driven customization approach for software product lines, which has been used for
product lines based on Web Services. The approach can be easily extended to other
client/server applications. We are investigating how the concepts of separation of
concerns and aspect-oriented development can be applied to product lines.

References

[Clements02] P. Clements and L. Northrop, Software Product Lines: Practices and Pat-
terns, Addison Wesley, 2002.

[Cohen98] S. Cohen and L. Northrop, “Object-Oriented Technology and Domain
Analysis”, Proc. International Conference on Software Reuse, Victoria, June
1998.

72 H. Gomaa and M. Saleh

 [Deitel03] Deitel, H. M., B. DuWaldt, et al. Web Services - A technical Introduction.
Upper Saddle River, New Jersey, Pearson Education, Inc, 2003.

[Gomaa96] H. Gomaa, L. Kerschberg, V. Sugumaran, C. Bosch, and I Tavakoli, "A
Knowledge-Based Software Engineering Environment for Reusable Soft-
ware Requirements and Architectures," J. Automated Software Eng, Vol. 3,
Nos. 3/4, 1996.

[Gomaa99] H. Gomaa and G.A. Farrukh, “Methods and Tools for the Automated Con-
figuration of Distributed Applications from Reusable Software Architectures
and Components”, IEE Proceedings – Software, Vol. 146, No. 6, December
1999.

[Gomaa00] H. Gomaa, "Designing Concurrent, Distributed, and Real-Time Applications
with UML", Addison Wesley, Reading MA, 2000.

[Gomaa02] H. Gomaa and M. Gianturco, “Domain Modeling for World Wide Web
Based Software Product Lines with UML”, Proc. IEEE International Confer-
ence on Software Reuse, Austin, Texas, April 2002

[Gomaa04] H. Gomaa and M. E. Shin, “A Multiple-View Meta-Modeling Approach for
Variability Management in Software Product Lines”, Proc. International
Conference on Software Reuse, Madrid, Spain, July 2004.

[Gomaa05] Gomaa, H. Designing Software Product Lines with UML: From Use Cases
to Pattern-based Software Architectures, Addison-Wesley, 2005.

[GomaaSaleh05] H. Gomaa and M.Saleh, “Software Product Line Engineering for Web Ser-
vices and UML”, Proc. 3rd ACS/IEEE International Conference on Com-
puter Systems and Applications, Cairo, Egypt, January 2005.

[Griss98] M. Griss, J. Favaro, M. D’Alessandro, “Integrating Feature Modeling with the
RSEB”, Proc. International Conference on Software Reuse, Victoria, June
1998.

[Kang 90] Kang K. C. et. al., “Feature-Oriented Domain Analysis,” Technical Report
No. CMU/SEI-90-TR-21, Software Engineering Institute, November 1990.

[Parnas79] Parnas D., "Designing Software for Ease of Extension and Contraction",
IEEE Transactions on Software Engineering, March 1979.

[Rumbaugh05] J. Rumbaugh, G. Booch, I. Jacobson, “The Unified Modeling Language
Reference Manual,” Addison Wesley, Second Edition, 2005.

[Weiss99] D M Weiss and C T R Lai, “Software Product-Line Engineering: A Family-
Based Software Development Process,” Addison Wesley, 1999.

Inter-organisational Approach in Rapid Software
Product Family Development — A Case Study

Varvana Myllärniemi, Mikko Raatikainen, and Tomi Männistö

Helsinki University of Technology
Software Business and Engineering Institute (SoberIT)

P.O. Box 9210, 02015 TKK, Finland
{varvana.myllarniemi, mikko.raatikainen, tomi.mannisto}@tkk.fi

Abstract. Software product families provide an efficient means of reuse
between a set of related products. However, software product families
are often solely associated with intra-organisational reuse. This paper
presents a case study of Fathammer, a small company developing games
for different mobile devices. Reuse at Fathammer takes place at mul-
tiple levels. The game framework and engine of Fathammer is reused
by partner companies that in turn produce game assets to be reused by
Fathammer while developing games for various devices. Very rapid devel-
opment of games is a necessity for Fathammer, whereas maintainability
of games is not important. The above characteristics in particular distin-
guish Fathammer from other case studies and practices usually presented
in the product family literature. The results show the applicability and
challenges of software product family practices in the context of multiple
collaborating companies and a fast-changing domain.

1 Introduction

Software reuse is a means of enhancing the efficiency of software development.
Several reuse techniques have emerged over the years, one of them being software
product families. A software product family is a set of products that share a
common, managed set of features [1], a common architecture and a set of reusable
components [2].

Typically, the reuse that takes place in a software product family is intra-
organisational. Recently, the possibility for more open family development has
been identified. van der Linden et al. [3] note that some software product family
organisations may cross company borders. Also the research challenges raised
by the transition from closed system development towards open networks have
been identified [4]. However, so far ideas rather than solid practices have been
presented. Very few cases have been reported on software product family organ-
isations that cross company borders.

This paper provides insight to a setting in which inter-organisational reuse
takes place within a software product family. We present a case study Fatham-
mer, a Finnish company that produces 3D games for various mobile devices.
Fathammer develops X-Forge, a game framework and engine, on top of which

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 73–86, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

74 V. Myllärniemi, M. Raatikainen, and T. Männistö

game titles are built. Game title development is outsourced to partner devel-
opment studios around the world. By reusing game titles, Fathammer derives
several game instances each of which is targeted for a certain device and market.
Thus the reuse takes place at multiple levels and across company borders.

In addition to the inter-organisational aspect, Fathammer displays a mix of
characteristics that is not typically found in reported software product family
case studies. The nature of the domain demands very short time-to-market and
development cycles, and puts pressure towards cutting them down even more.
However, tight schedules should not kill creativity. The case company is relatively
small and ad hoc in its practices.

The above-mentioned characteristics are in contrast to the well-known case
studies of successful product families in the domain of medical, automotive
and telecommunication systems [5]. Further, software product family engineer-
ing originated from embedded systems development [3]. Therefore, a successful
software product family often seems to be characterised by a stable domain,
long-lived products, long development cycles and mature engineering practices
inherited from embedded systems engineering.

Consequently, this case study indicates that software product family practices
can be applied in the context of multiple collaborating companies and within
a fast-changing domain. Hence this study refines the applicability of software
product family practices. Further, the case study brings out challenges and issues
that should be studied by the software product family research community.

The paper is organised as follows. Section 2 describes the research methods.
Section 3 gives an introduction to the case company. Section 4 reports the results
of the study. Section 5 compares the results to related research. Section 6 dis-
cusses the results and identifies lessons learned. Section 7 discusses the validity
of results. Finally, Section 8 draws conclusions and suggests future work.

2 Research Method

The goal of the research is to study state of the practice of different kinds of
software product families in the industry in order to sharpen the understanding
of the feasibility of the different kind of software product family engineering.
The study was carried out as a qualitative descriptive case study [6] at Fatham-
mer. We applied the CASFIS framework [7], which is a framework designed for
research on industrial software product families.

Fathammer was chosen to the study due to its unique mix of characteristics.
We identified these characteristics when the R&D director and process manager
of Fathammer gave us a brief overview of their current practices before the
study. The overview also gave background information that enabled to tailor the
CASFIS framework and focus the study.

The data collection was based on an interview, a validation session, docu-
mentation analysis, and a review. The primary data collection method was the
interview of the process manager and derivation manager of Fathammer. The
interview took about three hours. The interview questions of CASFIS [8] were

Rapid Software Product Family Development 75

Fig. 1. A screenshot from one game title called Stuntcar Extreme. (Copyright Fatham-
mer, reproduced with permission.).

slightly modified for the context of Fathammer. The interview was voice-recorded
and transcribed, and notes were taken. A few months later, a validation session
of roughly two hours was held, during which clarifying questions and uncertain
issues were discussed. Documentation analysis covered Fathammer public and
non-public documents that were identified to be relevant during the interview.
Finally, the process manager reviewed this paper.

The analysis followed the principles of grounded theory approach using de-
ductive coding of data [9]. The initial results were reported in the validation
session. For the final analysis, data from the validation session was added. The
data was analysed using ATLAS.ti [10], which is a software tool designed for
qualitative data analysis.

3 Fathammer

This section presents an overall description of Fathammer, divided according to
BAPO (Business, Artifact, Process, Organisation) [11] concerns.

3.1 Business

Fathammer (www.fathammer.com) is a Finnish company that produces 3D games
for various mobile devices. The domain of mobile games requires very short time-
to-market and development cycles. However, tight schedules should not outweigh
creativity, since games must be addictive and fun to be successful.

Games are distributed either through device manufacturers, operators or game
portals, which are called sales channels in this study. Fathammer has made a
strategic decision to stay independent of sales channels. The approach has been
multi-device from the start, which means that Fathammer provides support for
all devices that are feasible technically and sales-wise.

The goal of Fathammer is to produce games on top of proprietary game tech-
nology. Towards this end, Fathammer has developed a technology platform called

76 V. Myllärniemi, M. Raatikainen, and T. Männistö

X-Forge. X-Forge is licensed globally to third party development studios. Cur-
rently there are over 80 licensees of X-Forge around the world. Over 15 game
titles that use X-Forge have been shipped.

3.2 Artifact

X-Forge is a C++ game development system and a multi-device game engine.
Firstly, X-Forge provides functionality common to all games, such as graph-
ics rendering, object world and physics. Secondly, X-Forge abstracts underlying
hardware and operating system from games. Currently X-Forge comprises more
than 150 KLOC (thousands of lines of code).

Game titles are built by reusing and extending the assets X-Forge provides.
The game title architecture is largely determined by X-Forge. A large game title
may include over 50 KLOC. Besides code, a game title includes graphics, sounds,
and other auxiliary files.

The use of X-Forge alone cannot guarantee that the resulting game title is
optimal for a certain mobile device. Further, some sales channels may require
their own modifications, such as adding an operator logo to the game. Finally,
many localisations and languages have to be supported.

Thus each game title is specialised into a number of game instances called
SKUs (Stock Keeping Units). One SKU is targeted for certain device configura-
tion and localisation settings, and is distributed through a certain sales channel.
For each game title, approximately three to ten SKUs are produced—the exact
number depends on market needs.

3.3 Process

The development process of Fathammer (Fig.2) is divided into X-Forge devel-
opment and game development.

X-Forge is developed continuously. This includes extending the common func-
tionality, providing support for new platforms, and correcting found bugs. Only
rarely functionality implemented in a certain game title is merged into X-Forge.

The lower part of Fig.2 illustrates the development process for one game title
and its SKUs. In the preproduction phase, the game concept and its feasibility
are checked. In the production phase, the game title is developed iteratively.
In the postproduction phase, SKUs are derived from the game title assets. In

Fig. 2. A coarse-grained view of the development process at Fathammer. Preproduction
and production combined take approximately 4 to 6 months.

Rapid Software Product Family Development 77

some cases, the derivation consists of setting appropriate parameter values and
configuration settings and re-compiling the code. Usually the derivation also
requires a small amount of development or graphics design effort.

Fathammer does not maintain its game titles. Once a game title, i.e., its
first SKU, is released, the game title is not developed anymore, other than to
produce new SKUs when viable business opportunities emerge. New SKUs can
be produced even years after the initial release.

In general, the evolution of X-Forge does not affect previous game releases.
However, in a few exceptional cases, Fathammer has ported an old game title to
a new version of X-Forge in order to produce an SKU to a new device.

3.4 Organisation

Currently the organisation of Fathammer comprises 36 employees. The organi-
sation reflects the division of the development process. There are separate roles
for those responsible of X-Forge development, preproduction, production and
postproduction.

The development organisation crosses company borders. Development of one
game title (production phase in Fig.2) is outsourced to a partner game devel-
opment studio. These partner development studios are licensees of X-Forge, and
they are located around the world.

4 Results

This section reports the results from the case study analysis and describes three
interesting characteristics of Fathammer.

4.1 Inter-company Collaboration

Fathammer develops its software product family in a network of collaborative
companies. Four types of co-operation relationships can be identified (Fig.3).

Firstly, Fathammer sells licenses to third party game development studios
that wish to develop mobile games reusing X-Forge platform. However, due to
Fathammer’s recent decision to concentrate on game production, licenses are
currently sold only to major publishers and game development studios used for
outsourcing.

Secondly, Fathammer game title development is outsourced to partner game
development studios, which are also licensees of X-Forge. Fathammer makes
the final decisions concerning content of a game, budget and schedule of the
development. A benefit of outsourced game development is that Fathammer can
increase volume of its software product family without increasing its own size.
Fathammer can concentrate on its core capabilities and yet produce a large game
portfolio. Another benefit is that by outsourcing game development, Fathammer
expands the network of licensed developers, and thus promotes the use of X-Forge
as a game technology. However, Fathammer has met some major difficulties in

78 V. Myllärniemi, M. Raatikainen, and T. Männistö

Fig. 3. Collaboration with Fathammer and other companies

outsourcing game title development. In particular, outsourcing development of
software that supports variability has proved to be harder than expected.

Thirdly, device manufacturers form a major source of constraints and require-
ments, since the hardware and operating system underneath affects mobile games
considerably. However, Fathammer cannot affect the properties of devices, but
the software has to be adapted to device peculiarities. Sometimes the implemen-
tation of a device may contain a few surprises, causing difficulties in the game
development.

Fourthly, the games are distributed through sales channels. These sales chan-
nels may require a customised version of the game, which essentially means
producing a new SKU. As an example, an operator may want to distribute a
game that portraits operator logos.

4.2 Hierarchical Software Product Family

Fathammer software product family artifacts have been organised hierarchically
(Fig.4). There are two levels of reuse and three levels of artifacts in the hierarchy:
game titles are built reusing X-Forge, while game titles provide means for rapid
SKU production.

The software product family of Fathammer is hierarchical also from the organ-
isational point of view. Further, this hierarchy crosses company borders. X-Forge
is developed in-house. Then, X-Forge is reused by partner game development

Rapid Software Product Family Development 79

Fig. 4. Fathammer software product family is hierarchical in nature

studios during the game title development. Finally, Fathammer reuses the game
title assets during SKU derivation.

The hierarchical model of software product family engineering has brought
several benefits to Fathammer.

Firstly, the amount of variability Fathammer has to cope with is considerable.
A hierarchical model eases the overall variability handling, provides a separation
of concerns and eases derivation for each level.

Secondly, the hierarchical model is easily combined with the geographical
distribution that stems from the outsourced game title development. This di-
minishes the inevitable overhead of distributed development.

Thirdly, a hierarchy eases managing entities with different life cycles. The
long-lived and more stable part, X-Forge, is separated into its own layer of soft-
ware product family, which can be maintained and developed more indepen-
dently. Short-lived game titles and SKUs are developed separately.

However, a hierarchical approach brings also challenges. A hierarchy makes
the organisation and development structure more complex, and weakens the link
from the lower level to the upper level entities. However, since Fathammer is such
a small organisation, these drawbacks do not have much overall impact.

4.3 Challenges of Rapid Variant Production

The main reason for Fathammer to reuse software is to enable rapid production of
variants, since both game titles and SKUs must be produced in a short time frame.
This can be achieved by efficient variability management and implementation.

The devices on which Fathammer builds its games vary drastically, rang-
ing from cell phones and portable game consoles to PDAs and Pocket PCs. To
cope with this variability, Fathammer has developed X-Forge as a multi-device
platform that abstracts hardware away. However, X-Forge alone does not suffice,
since some of the hardware-related variability must be taken care of during game
title development and SKU derivation. As an example, game controls should be
easy to use, regardless of the input controls of the device. Further, game graph-
ics and menus have to adopt to varying display properties, such as resolution
and orientation. The postponement of these issues slows SKU production down
remarkably.

80 V. Myllärniemi, M. Raatikainen, and T. Männistö

The varying hardware also causes quality attribute variability. The differences
in the device computing resources might be enormous, and thus the software
may need to vary its behaviour in order to provide the best perceived quality
on all devices. In effect, this requires varying the performance level and memory
consumption of software by tuning the game. Fathammer handles this variability
in a straightforward manner: varying quality attributes are transformed into
varying functionality. Since graphics form a major factor in the consumption
of computing and memory resources, it is easy to tune the performance and
memory consumption level by, e.g., changing the number of drawn polygons, the
drawing algorithms, materials and applied textures.

To complicate the situation even further, game titles and SKUs are very short-
lived; in fact they are not maintained at all after release. We call this kind of
approach as a disposable software product family. A disposable software product
family sets certain requirements for variability implementation and management.
It is not feasible to build extensive variability mechanisms into game titles, since
those mechanisms are used only for deriving a number of SKUs. The challenge
is, how to implement variability mechanisms to game titles in a light-weight yet
effective manner?

Further, building necessary variability mechanisms must be balanced with
outsourcing. The initial approach was to outsource software without any variabil-
ity. But when a game had not been designed to support variability, variability was
really difficult to add afterwards. In other words, this approach accelerated the
development of the first SKU, but delayed the development of further variants.

Therefore, Fathammer decided to explicitly specify some variability to
outsourced development. However, it would have been infeasible to require im-
plementation for all possible variability; this would have slowed down the game
production too much. Therefore, verification configurationsmodel was introduced.
The game developers are given a number of separate device configurations that rep-
resent the range of existing mobile devices. These configurations specify the most
critical aspects of the device, such as screen resolution and memory size. At the mo-
ment, the number of verification configurations used is three. A game is developed
from the start to support these configurations. This enforces a game developer to
identify variationpoints, i.e., the locations in the artifactswhere the configurations
differ from each other, and implement variation mechanisms for them.

To conclude, extending existing variation points with new variants is easier
than creating new variation points from scratch.

5 Related Research

This section discusses related research, compares it with Fathammer practices,
and identifies possible mismatch.

5.1 Intra-company and Inter-company Collaboration

Reported case studies of software product families tend to operate in closed,
centralised structures of development [12]. Thus the notion of software product

Rapid Software Product Family Development 81

family development being comprised of networks of external interoperating com-
ponent suppliers has not materialised as anticipated [12].

The concept of open networks is presented in product family evaluation frame-
work [3]. BAPO-O, the organisation dimension of the framework, promotes level
4 as inter-company model, and level 5 as open business model. At level 4, soft-
ware product family engineering takes place between several companies, while
at level 5 the business is open for everyone who sees the advantage. However, to
the best of our knowledge, there are no reported examples of level 5 approaches.

Even if the collaboration is intra-organisational, a software product family
approach within a large company with separate divisions may raise conflicts
that hinder the promotion of common interest [13].

Geographical distribution can bring its own challenges to software product
family practices. Nokia has tried to answer this organisational challenge by or-
ganising its units to be aligned with product family development in order to
minimise the overhead of distributed development [14].

Challenges of outsourcing and global software development [15] have been
to some extent covered in software engineering research. However, outsourcing
in the context of software product families has gained only little research. To
the best of our knowledge, there is no research of outsourcing development of
software that should support variability.

In comparison with related research, Fathammer software product family is
relatively open. Four kinds of collaborations shape the software product fam-
ily practices of Fathammer, and one of these collaborations involves global
outsourcing.

5.2 Hierarchical Software Product Family

The hierarchical model of software product families is argued to be primarily
suitable for large organisations with long-lived products [2, 16]. A considerable
maturity with respect to development process and management is required [16].
According to Bosch [16], systems with relatively stable requirement sets and
long lifetimes are substantially more suitable than products whose requirements
change frequently and drastically, e.g., due to new technological possibilities.

Fathammer seems to be almost the exact opposite of the most optimal en-
vironment described in [16]. Despite this, Fathammer has succeeded in creat-
ing a hierarchical software product family model that suits its needs very well.
However, there are a couple of success factors mentioned in [16] that apply to
Fathammer case. Firstly, the geographical distribution that is due to outsourc-
ing is easily combined with the hierarchical model of development. Secondly,
the hierarchical model is especially suitable to situations where the amount of
variability is large.

A drawback of the model is that agile reactions to changed requirements are
difficult to make [16]. If an asset on the top level of hierarchy changes, the change
must be propagated down all levels of hierarchy. However, this is not an issue for
Fathammer, since game titles are not evolved after the release. Even if something
changes at the upper level of hierarchy, i.e. in X-Forge, there is usually no need
to accommodate existing game titles to these changes.

82 V. Myllärniemi, M. Raatikainen, and T. Männistö

5.3 Challenges of Rapid Variant Production

For Fathammer, one of the biggest obstacles to rapid variant production is caused
by varying hardware. Hardware enforced variability is software variability that
depends on or is presupposed by the hardware configuration [17]. However, liter-
ature on variability most often refers to hardware neutral variability, assuming
that variability originates purely from software [17].

Similar problems of hardware variability has been encountered at Nokia [14].
This is called hardware challenge, main sources of which consist of keys, display
and scrolling, sound and backwards compatibility. Although in many respects
Fathammer faces the same problems as Nokia, there are a few significant differ-
ences. Firstly, Nokia has control over the hardware and operating systems of the
devices, whereas Fathammer does not. Secondly, Fathammer has to operate on
many device manufacturers with many devices, which amplifies the differences
between variants.

Hardware also creates a need for quality attribute variability at Fathammer.
Although quality attributes have been studied quite extensively, surprisingly
little research on quality attribute variability has been carried out. Only a few
studies mention this phenomenon [18, 19]. However, it is possible that varying
quality attributes are more difficult to handle than varying functionality. Unlike
functionality, many qualities are architectural in nature [20]. Therefore, changing
a quality attribute may require system-wide changes in the architecture.

Svahnberg et al. [21] point out that variability should not be introduced too
early during the development, since the cost of managing and tracking variants
throughout the variability implementation process may be too high. Since the
short life span of Fathammer game titles require light-weight variability handling,
the cost of early introduction would be even more severe. However, the difficulties
with outsourced development indicate that variability shouldn’t be introduced
too late either.

5.4 Related Case Studies

One of the early pioneers of software product family development has been Nokia
[14]. Many of the challenges faced by Nokia are similar to the ones faced by
Fathammer. However, these companies are vastly different. Nokia is a huge or-
ganisation with very solid practices. Fathammer products are short-lived, and
Fathammer has less control over their development. However, it is interesting to
see that also Nokia regards openness to be vital for future success [4].

There are case studies of small to medium sized companies that have applied
software product families successfully: MarketMaker [22] and Salion [23]. How-
ever, Fathammer operates in a domain that seems to require considerably more
flexibility and shorter life cycles.

A recent study presented how Java mobile games could be re-engineered us-
ing aspect oriented techniques [24]. However, this study was not an industrial
case study. It merely showed that it is technically feasible to construct a soft-
ware product family from Java mobile games. In contrast, our case shows the

Rapid Software Product Family Development 83

feasibility, technically, organisationally and business-wise, of creating a software
product family in such a domain.

6 Discussion and Lessons Learned

Based on the results of the case study (Section 4) and the comparison with re-
lated research (Section 5), we identify lessons that can be learned from Fatham-
mer case.

Software product family engineering can be applied to small companies without
matured engineering practices and to domains that are fast-changing and require
short development cycles. Fathammer has successfully developed its products
in a software product family. The benefits of this model of development have
not been directly measured, but one indicator of the success is that Fathammer
is currently building a similar game framework for Java mobile games. The
drawback of this approach is that Fathammer games are not optimised for certain
devices. However, Fathammer has made the strategic decision to serve many
instead of focusing on a few devices only.

A software product family development can cross company borders. Game title
development is outsourced to geographically distributed partners. Outsourcing
is combined with selling licenses to X-Forge platform. To cope with the overhead
involved in distributed development, Fathammer has organised its reuse hierar-
chy (see Fig.4) to match the outsourced development. The inter-organisational
approach has been feasible even in a relatively small software product family.
In fact, outsourcing is seen as a way of increasing volume without increasing
company size.

Outsourcing development of software that is reusable and variable brings new
challenges. The challenge lies in specifying the required variability for outsourced
software. Extending existing variation points with new variants is easier than cre-
ating new variation points from scratch. It is not necessary to specify all possible
variants, but it is essential to ensure that the outsourced software implements
some mechanisms for all variation points. To address this issue, Fathammer is
applying verification configurations model to its development.

Hierarchical software product families can be applied to small companies operat-
ing on fast-changing domains. Fathammer has regarded the hierarchical model
to be very well suitable for organising its software product family engineer-
ing. The affecting factors were the need for distributed development, the large
amount of variability, and the differences in the life spans of X-Forge platform,
game titles and SKUs. The hierarchical model provides a separation of concerns
that suits these needs well.

Hardware enforced variability can be a challenge to rapid variant production.
Although X-Forge as a multi-device platform abstracts hardware away, there
are inevitably some device-related issues that set challenges to rapid game ti-
tle and SKU production. This is especially apparent when dealing with many

84 V. Myllärniemi, M. Raatikainen, and T. Männistö

device manufactures whose products differ from each other considerably. To con-
clude, a multi-device platform may not be enough to cover all hardware enforced
variability.

Quality attribute variability can be resolved by transforming it to varying func-
tionality. 3D games are very performance-intensive. When this kind of software
has to be adapted to varying hardware, it is necessary to vary the performance
level of software. Fathammer does this by transforming varying quality to vary-
ing functionality. However, there is one factor, namely graphics, which largely
determines the quality. Without such a factor, it is possible that architectural
means are needed. Further research on this topic is required.

Short life span of reusable assets requires light-weight variability mechanisms. A
software product family with a very short life span requires light-weight yet ef-
fective ways of realising and implementing variability mechanisms. One Fatham-
mer game title forms a disposable software product family. Therefore, effective
variability implementation is far more important than effective variability man-
agement.

7 Validity and Reliability

We tried to ensure validity by using multiple sources of data i.e. the interviews,
document analysis, and validation session; allowing an interviewee at Fatham-
mer to review the report; and establishing a chain of evidence i.e. stored data
and using as accurate data as possible, such as transcripts. The study contains
also threats to validity: data collection took relatively short time although use
of the methods was relatively efficient since the researchers were familiar with
the research methods, had used the method in several studies before, and the
method, in particular the interview questions, was tailored to Fathammer on
a basis of initial understanding; only two persons were interviewed; no game
developer partners were interviewed; and the study lacked longitudinal obser-
vations in which the Fathammer would have been observed over a period of
time. Reliability was improved by following the publicly documented CASFIS
framework [7].

We aimed to show that software product family practices can be applied
in several different contexts. Consequently, research results on software prod-
uct families may need refinement for applicability. While similar practices as at
Fathammer could be applied with similar success, there are several context fac-
tors that should be taken into account. However, this requires further research.

8 Conclusions

We have presented a case study of Fathammer, a company developing a software
product family of 3D mobile games. The domain requires flexibility, creativity
and short time-to-market; yet it has been feasible to build a software product
family on such a domain.

Rapid Software Product Family Development 85

Fathammer case exemplifies the following. Firstly, software product family
organisations can cross company borders. Secondly, software product family de-
velopment can be outsourced, but this kind of outsourcing raises new challenges
related to variability implementation. Thirdly, even small, immature companies
requiring flexibility can develop a hierarchical software product family. Fourthly,
a multi-device platform is not always enough per se, but hardware enforced vari-
ability needs to be taken care of during variant production, thus delaying the
release. Finally, if the artifacts of the software product family are short-lived,
light-weight variability management is required.

Although software product family development has helped Fathammer to pro-
duce games more efficiently, several challenges remain to be solved. Therefore,
areas that need further research are identified.

Firstly, outsourcing combined to software product families requires further re-
search. What are the situations in which outsourcing is applicable? How can one
successfully outsource development of software that should support variability?

Secondly, hardware enforced variability has not gained much research at-
tention. At Fathammer, varying hardware creates a need for quality attribute
variability. If quality attribute variability cannot be easily transformed into func-
tional variability, there is a need for other, possibly architectural means.

Acknowledgements

The authors acknowledge Ville Vatén and others at Fathammer who participated
and aided our case study. The financial support of the 100-year Foundation of
Technology Industries of Finland is acknowledged.

References

1. Clements, P., Northrop, L.: Software Product Lines—Practices and Patterns.
Addison–Wesley (2001)

2. Bosch, J.: Design and Use of Software Architectures: Adapting and Evolving a
Product-Line Approach. Addison–Wesley (2000)

3. van der Linden, F., Bosch, J., Kamsties, E., Känsälä, K., Obbink, H.: Software
product family evaluation. In: Proc. of Software Product Line Conference. (2004)

4. Bosch, J.: Software product families in Nokia. In: Proc. of Software Product Line
Conference. (2005)

5. Cohen, S.: Product line state of the practice report. Technical Report CMU/SEI-
2002-TN-017, Software Engineering Institute (2002)

6. Yin, R.K.: Case Study Research. 2nd edn. Sage: Thousand Oaks (1994)
7. Raatikainen, M., Männistö, T., Soininen, T.: CASFIS–approach for studying soft-

ware product families in industry. In: Proc. of the 2nd Groningen Workshop on
Software Variability Management. (2004)

8. Raatikainen, M., Männistö, T., Soininen, T.: Case study questions for studying
industrial software product families. Technical Report HUT-SoberIT-C10, Helsinki
University of Technology (2004)

9. Strauss, A., Corbin, J.: Basics of Qualitative Research: Grounded Theory Proce-
dures and Techniques. Newbury Park, CA: Sage Publications (1990)

86 V. Myllärniemi, M. Raatikainen, and T. Männistö

10. ATLAS.ti: User’s manual and reference, version 4.2. (2004)
11. van der Linden, F.: Software product families in Europe: The Esaps and Cafe

projects. IEEE Software 19(4) (2002) 41–49
12. Mannion, M.: Organizing for software product line engineering. In: Proc. of Work-

shop on Software Technology and Engineering Practice. (2002)
13. van Ommering, R., Bosch, J.: Widening the scope of software product lines—from

variation to composition. In: Proc. of Software Product Line Conference. (2002)
14. Maccari, A., Heie, A.: Managing infinite variability in mobile terminal software.

Software—Practice and Experience 35(6) (2005) 513–537
15. Herbsleb, J., Moitra, D.: Global software development. IEEE Software 18(2) (2001)

16–20
16. Bosch, J.: Software product lines: Organizational alternatives. In: Proc. of Inter-

national Conference on Software Engineering. (2001)
17. Jaring, M., , Bosch, J.: A taxonomy and hierarchy of variability dependencies in

software product family engineering. In: Proc. of Computer Software and Appli-
cations Conference. (2004)

18. Halmans, G., Pohl, K.: Communicating the variability of a software-product family
to customers. Software and Systems Modeling 2(1) (2003) 15–36

19. Hallsteinsen, S., Fægri, T.E., Syrstad, M.: Patterns in product family architecture
design. In: Proc. of Workshop on Software Product-Family Engineering. (2003)

20. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison–
Wesley (1998)

21. Svahnberg, M., van Gurp, J., Bosch, J.: A taxononomy of variability realization
techniques. Software—Practice and Experience 35(8) (2005) 705–754

22. Gacek, C., Knauber, P., Schmid, K., Clements, P.: Successful software product line
development in a small organisation. Technical Report IESE-Report No. 013.01/E,
Fraunhofer IESE (2001)

23. Clements, P., Northrop, L.: Salion, inc.: A software product line case study. Tech-
nical Report CMU/SEI-2002-TR-038, Software Engineering Institute (2002)

24. Alves, V., Matos, P.J., Cole, L., Borba, P., Ramalho, G.: Extracting and evolving
mobile games product lines. In: Proc. of Software Product Line Conference. (2005)

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 87 – 100, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Ontology-Based Feature Modeling
and Application-Oriented Tailoring

Xin Peng, Wenyun Zhao, Yunjiao Xue, and Yijian Wu

Computer Science and Engineering Department, Fudan University, Shanghai 200433, China
{pengxin, wyzhao, yjxue, wuyijian}@fudan.edu.cn

Abstract. Feature models have been widely adopted in domain requirements
capturing and specifying. However, there are still difficulties remaining in do-
main model validating and application-oriented tailoring. These difficulties are
partly due to the missing of a strictly defined feature meta-model, which makes
it difficult to formally represent the feature models. Aiming at the problem, we
propose an ontology-based feature modeling method supporting application-
oriented tailoring. In this method features are classified into several categories
and are all precisely defined in the OWL-based meta-model. Expression capacity
of the feature model can be greatly improved due to the rich types of features.
On the other hand the feature model can be easily converted into ontology model
and be validated through ontology inference. Application-oriented tailoring can
also gain support from the reasoning-based guidance. Finally, advantages of
ontology-based feature modeling, especially for component and architecture
design, are discussed with our conclusions.

1 Introduction

Domain analysis is an essential activity for successful reuse across applications in the
same domain. Based on the domain model, domain assets, including DSSA (Domain-
Specific Software Architecture) and domain components can be produced. When
implementing a new system, products of domain analysis will be tailored to produce
the specification and design of that system [1]. So, it is obvious that domain model is
essential for domain and application-specific development.

To provide necessary supports for the domain and application development, the
domain model should meet some requirements. First, it should provide sufficient
business knowledge for the design of architecture and components. Second, it must
offer the means to specify both features and their composition rules [2]. Then valida-
tion of the model can be performed on constraints. A domain model is valid if there is
at least one set of single-system requirements that can be generated from it and satisfy
the constraints [3]. An inconsistent domain model is meaningless for application de-
velopment and will cause unnecessary investment waste in domain development.
Third, it should present an applicable way for application engineers to configure the
domain model according to product-specific requirements.

Nowadays, concept of feature model has been widely adopted in domain require-
ments capturing and specifying, since FODA [1] introduced it into domain engineer-
ing. However, a strictly defined feature meta-model is often missing, which makes

88 X. Peng et al.

feature models difficult to be formally represented. Thus, validation and application-
oriented tailoring of domain models are also difficult due to the missing of a formal
basis. Schlick [4] also indicated that a solid theoretical foundation is needed first.

Our research group is concerned with feature-driven domain and application devel-
opment, including domain analysis, DSSA design, application-oriented tailoring and
component-composition based application development. In these fields a strictly-
defined modeling basis for features is essential, which should provide a mechanism to
connect model elements in various development phases. Ontology related theory is a
suitable way to achieve our goals. Ontology is a conceptualization of a domain or
subject area typically captured in an abstract model of how people think about things
in the domain [5]. Rubén [5] considers domain models as narrow or specialized on-
tology, and the main difference is that domain models define abstract concepts in an
informal way and have no axioms. Because of the facilities for the generalization and
specialization of concepts and the unambiguous terminology it provides [6], ontology
has been widely used in domain knowledge representation and requirement modeling,
reuse and consistency checking. For example, Sugumaran etc. [7] proposed a seman-
tic-based approach to component retrieval, in which ontology and domain models are
adopted for capturing application domain specific knowledge to express more perti-
nent queries for component retrieval. Girardi etc. [6] proposed GRAMO, an ontology-
based technique for the specification of domain and user models in Multi-Agent
Domain Engineering.

This paper proposes an ontology-based feature modeling method, in which features
are divided into several categories (e.g. action, facet, and term) and defined as ontol-
ogy concepts respectively. In this way, we can provide better support for domain
modeling, and succeeding domain design and implementation. First, ontology-based
feature model can be formally represented easily and validation of the model can be
realized through ontology reasoning. Second, the ontology-based unambiguous termi-
nology and faceted feature description provide precise and detailed semantic knowl-
edge for the domain, so the feature model can also be adopted as the domain business
model. The rich business information in it can be used as semantic infrastructure for
component description and architecture design. Third, modularity can be supported by
feature facets and dependency semantics. Finally, it provides a unified meta-model for
both domain model and application model and a stepwise way for customization,
which ease the application-oriented tailoring of feature models.

The remainder of this paper is organized as follows. Section 2 presents the ontol-
ogy-based feature modeling architecture and the meta-model. Section 3 and section 4
discuss model validating and application-oriented tailoring respectively. Finally, we
draw our conclusions with discussion of ontology-based feature modeling and future
work in section 5.

2 Ontology-Based Feature Model

This section introduces the ontology-based feature modeling architecture and the
feature meta-model first. Then some basic rules for feature modeling are introduced in
2.3, followed by an example of feature model in 2.4 for demonstration. Finally
representation of complex constraints and the modularity mechanism are specially

 Ontology-Based Feature Modeling and Application-Oriented Tailoring 89

discussed in 2.5 and 2.6 respectively. Since OWL [8] is a W3C recommendation for
ontology representation, we define the meta-model on OWL.

2.1 Ontology-Based Feature Model Architecture

Our ontology-based feature modeling architecture is presented in figure 1, which is
based on a three-layer structure with an ontology level besides the traditional feature
model level and meta-model level. The meta-model is strictly defined on OWL, so the
feature model can be easily converted into OWL model. Constraints-related rules are
also given in the meta-model level and then converted into ontology rules. By ontol-
ogy reasoning we can perform both domain model validating and tailoring guidance,
which are discussed in section 3 and 4 respectively.

The structure is similar to the XML-based three-layer structure in [2], while the
main difference is that in our method domain model and application model share the
same meta-model, only with different variability policy. Domain model contains
domain-level variability, which will be specialized during application engineering to
derive final products [4]. Even application model may still contain variability, which
will be fixed at runtime by parameters or configuration files.

Fig. 1. Ontology-based feature modeling architecture

2.2 Feature Meta-model

Intuitively, a feature is a coherent and identifiable bundle of system functionality that
helps characterize the system from the user perspective [9]. So operations with busi-
ness semantics are basis of the feature model. In feature-oriented domain analysis,
aggregation and generalization are applied to capture the commonalities among appli-
cations in the domain in terms of abstractions [1]. Differences between applications
are captured in the refinements [1], mainly by decomposition and specialization.

In our method, features are divided into several categories. The basis is Action,
which represents business operations. In order to provide more business details for
actions, we introduce the concept of facet for actions, which can be construed as per-
spectives, viewpoints, or dimensions [5] and is a widely used classification scheme in

90 X. Peng et al.

library science. Facet is defined as dimension of precise description for Action. An
action can have multiple facets and the facets can be inherited along with generaliza-
tion relations between actions. Restricted value space for Facet is represented by
Term. By Facet and Term, we can define a feature in more detail. This mechanism
provides the “feature attributes” expressiveness, as proposed in [4].

In the ontology-based feature meta-model (depicted in figure 2) Action and Term
are defined as OWL Class (owl:Class). Facet is defined as OWL property (owl:Pro-
perty), domain (rdfs:domain) and range (rdfs:range) of which are Action and Term
respectively. As OWL classes, Action and Term can form their own specialization tree
by the relation subClassOf, which represents direct inheritance. All the subClassOf
instances will be converted into rdfs:subClassOf in the OWL model, and the direct
subClassOf relations will be reserved.

In figure 2, domain and range of OWL properties are represented by aggregation
elements with solid and dashed lines respectively. HasElement is another important
relation, which represents decomposition between certain action and its sub-actions.

Specialized and optional features are two basic mechanisms for variation [10]. In
our method, the former is achieved by generalization between actions or terms, while
the latter is denoted by the IfOptional property defined on HasElement. The range of
IfOptional is the RDF data type xsd:Boolean and the value True means the sub-action
is an optional element for its parent action. It should be noticed that the optional prop-
erty is not defined on action itself but on the relation with its parent, so an action can
have different optional property for different parents. In OWL, a property is also a
class, so we can easily define a property on another property.

Three kinds of dependencies are identified in our method, namely Use, Decide and
ConfigDepend. Use denotes the dependency on other features for its correct function-
ing or implementation [11], which is somewhat similar to HasElement. However,
parent action in HasElement relationship can be seen as cooperation framework for its
sub-actions, while a Use client often implements some actual function and assign
certain part to the supplier. Decide indicates that execution result of an action can
determine which variant of a variable action will be bound for its parent action
(HasElement) or client (Use). So, the range of Decide includes HasElement and Use.
Use and Decide embodies direct runtime functional dependencies, while ConfigDe-
pend represents configuration constraints, which are static dependencies on binding-
states of variable features [12]. Besides Action, the meta-model provides more precise
expressiveness for elements of configuration dependencies by FacetValue. Facet-
Value itself is an OWL property from Facet to Term or Boolean, representing the
facet value assumption of certain action.

The phase in the software life-cycle to decide whether a variation feature should be
bound to or removed is called binding-time of features [13]. And the binding times
will influence the design of system architectures [10]. So HasBindTime is defined on
HasElement or Use relationships where the sub-action or use supplier action has
variations (e.g. optional HasElement instance or abstract action with several variants).
Typical binding times include reuse-time, compile-time, load-time, and run-time [1,
10]. However, only two binding times of BuildTime and RunTime are identified, since
the main purpose of feature model is to support the tow development phases of
domain engineering and application engineering. Intuitively, BuildTime binding
variations should be implemented as abstract components, which are replaced by

 Ontology-Based Feature Modeling and Application-Oriented Tailoring 91

application components in product development, while RunTime binding variations
should be implemented as domain components with variant-selecting proxy or inter-
face parameters, which can determine the final semantics of the invoked service at
runtime.

Fig. 2. Ontology-based feature meta-model

2.3 Basic Rules

There exist some basic rules for feature modeling. They act on the feature model
directly and can be easily validated in modeling process. Because of the limited space,
only three of them are listed here.

Definition 1. Facet set and facet value
action Action, FacetSet(action) denotes all the effective facets for action. And for
facet FacetSet(action), action.facet represents the value of action taken on facet.

For example, there is TextualDisplay.NeedProtocol=Telnet in figure 3.

Property 1: Facet value restriction on sub-actions
a1,a2 Action, f FacetSet(a1), lets (a2 subClassOf a1), then f FacetSet(a2) and

(a2.f subClassOf a1.f).
Note that in OWL a concept is a subclass of itself.

Property 2: Decomposition consistency
A1,A2 Action, (A2 subClassOf A1), then for a1 Action and A1-a1=(A1 HasE-

lement a1):

92 X. Peng et al.

If (A1-a1 IfOptional False), then a2 Action, (a2 subClassOf a1), A2-a2=(A2
HasElement a2) and (A2-a2 IfOptional False).

This property states that all the mandatory elements of an action should be reserved
in its variants. For the optional elements, the variants can have their own policies
(removed, or reserved to be mandatory or optional).

Property 3: Decide binding time
a1,a2 Action, a1-a2=(a1 HasElement a2) or a1-a2=(a1 Use a2), if a3 Action

and (a3 Decide a1-a2), then (a1-a2 HasBindTime Runtime).
This property limited the target of Decide to have the binding time of Runtime: The

source of Decide will execute at runtime to determine the variant of the target.

2.4 Feature Model Example

A segment of EBBS domain feature model is presented in figure 3. The top feature
BBSService is decomposed into UserLogin, MailService, BoadService, and MsgDis-
play, in which MailService is identified as optional element. Facet HasFilePolicy is
defined between BoardService and FilePolicy, which represents whether file-upload
is supported when posting and the allowed file types. According to the concept inheri-
tance semantics in OWL, facets defined on an action are inherited by its variants.
Furthermore, values of the facets are restricted by the super-action. For example,
NeedProtocol is defined on MsgDisplay, so the facet values of NeedProtocol on
GraphicalDisplay and TextualDisplay are restricted to be subclass of Protocol (Http
and Telnet in figure 3). Besides abstract and optional actions (denoted by subClassOf
and IfOptional), Facet also reserves variations for corresponding Action feature.
For instance, Facet HasStorageWay defined on FileTransfer enables application
engineers to make the decision of storing uploaded files in database or file system.

Fixing stages of all these variations are indicated by BindTime. For example, Bind-
Time of the HasElement instance between BBSService and MailService is BuildTime,
so the supported file policy of BoardService should be decided in application devel-
opment and be fixed at runtime.

Two variants of UserLogin are identified in the model. NormalLogin means accept-
ing and treating the request normally, while RejectLogin means rejecting the request.
The binding time of them is RumTime and the binding is determined by LoadEvalu-
ate. That means evaluating the system load and rejecting the login request when the
load is heavy. Decide is similar to the Modification dependency in [11], which is
interpreted as that the behavior of a feature can be modified by another feature. We
consider Decide is clearer for dependency description in that the modifier is just a
determining factor for variant-selecting of modifiee.

Both BoardService and MailService have Use dependencies on FileTransfer, and
they are both optional. It can be seen from the ConfigDepend on FileTransfer that facet
values of BoardService and MailService can determine the binding of FileTransfer.
The FacetValue on BoardService can be interpreted as the situation of “BoardService
having the value of FileSupport on the facet of HasFilePolicy”. The appearance of that
situation depends on the binding of FileTransfer and GraphicalDisplay.

 Ontology-Based Feature Modeling and Application-Oriented Tailoring 93

Fig. 3. Example of EBBS domain feature model

2.5 Complex Constraints

Constraints are a kind of static dependencies among binding-states of features [12],
which provide a way to verify the results of requirements customization [13]. Three
constraint categories, namely binary constraints, group constraints, and complex con-
straints, are identified in [12].

Fig. 4. Expression of complex constraints

94 X. Peng et al.

In our method, constraints are represented by ConfigDepend, which is a kind of bi-
nary constraints defined between Action and FacetValue. By decomposition, specializa-
tion and binary constraints, we can also intuitively express most group constraints and
complex constraints referred in [12]. Figure 4 shows the most usual cases. Figure 4a
shows the common case of all-bound group constraints in that mandatory elements
sub1, sub2… should be bound for parent. Figure 4b indicates that one and only one of
the variants var1, var2… of abstract should be bound for it. Figure 4c-4e present com-
mon expressions of complex constraints. For example, 4e denotes that the binding of
abstract (any of its variants) requires the binding of parent (all of its elements).

2.6 Modularity Mechanism

An applicable modularity mechanism is essential for feature modeling, especially
when the model is large and complex. For example, the feature macro mechanism is
proposed in [2] to split a large model into independent modules. A feature macro
contains a feature node with all its sub-nodes, and can be extended in different in-
stances by adding new features to its sub-tree. But this parameterized modularity
mechanism has some shortages in flexibility and encapsulation.

Fig. 5. Facet-based feature modularity mechanism

In our method, a module is a block box with a top feature and all its sub-features,
which can be referred at different points of upper feature diagrams in different manners.
The inner structure of the module is defined in its module feature diagram. Thus, a
large feature model can be easily decomposed into modules at various layers. Figure 5
demonstrates the facet-based feature modularity mechanism, in which Action M is
referred as whole by three actions and the inner structure of the module is defined in
Feature Module M. Action1, Action4 and Action5 reuse Action M by the relationships
of HasElement and Use with different parameters, which are expressed by those Con-
figDepend instances on Action M. For example, Action4 demands the facet FacetM2
of Action M to be TermM2. Thus Feature M can be reused for different detailed de-
mands as a black box, only its facets can be referred as “feature interface”. Inner model
of Feature M can be defined independently. In Module M (depicted in figure 5), Action

 Ontology-Based Feature Modeling and Application-Oriented Tailoring 95

M is further described by its sub-features. Realization of various semantics of Action
M depends on its sub-features. The dependencies are represented by the ConfigDe-
pend instances between Action M and its sub-features. So we can see how various
outer demands can be implemented by module M clearly. Besides, the sub-features
can also employ those outer features provided by the top feature. For example, Action
M has Use relationship with Action6, so Action6 can be referred in module M by
ActionM1. Thus, when developing the feature model of a module, one need only to
consider how to meet various facet semantics of the top feature with outer resources
provided by the top feature.

3 OWL-Based Formal Representation and Validation

Based on the meta-model over OWL we can transform a feature model into OWL
model easily. Then reasoning-based validation can be performed on the ontology by
inference engine. Jena [14] is a widely used Java framework for building semantic
web applications, which provides a programmatic environment for RDF, RDFS and
OWL, including a rule-based inference engine. In our implementation, it is adopted to
generate the OWL file and reason on it.

3.1 OWL Representation of Feature Model

A segment of the OWL model for the EBBS domain feature model (depicted in
figure 3) is presented in figure 6. Action features (e.g. BBSService, MsgDisplay) are
defined as subclasses of Action. Facets (e.g. NeedProtocol) are defined as subproper-
ties of Facet with various facets and terms. The decomposition relationship between
BBSService and MailService is denoted by BBSService-MailService, which is a sub-
property of HasElement with the IfOptional value “true”. The OWL model can be
generated by Jena API and be further processed with inference rules.

3.2 Constraints-Related Rules

This subsection introduces constraints-related rules for feature modeling. Constraints
on variation features capture the binding relations with other features [10]. Validation
of these rules is not as direct as the basic rules (see 3.1). So some methods are pro-
posed to capture and validate on the constraints, such as propositional logic [10, 13],
first-order logic [3] and XSL [2]. In our method, constraints are captured by inference
rules and validated by ontology reasoning. So the constraints-related rules are de-
scribed as Jena OWL rules here. A Jena rule has the format of:

[uncle: (?a fatheris ?b), (?b brotheris ?c) -> (?a uncleis ?c)].

 This rule denotes a simple inference that a brother of one’s father is his uncle.
For a variation feature, the binding-state can be Bound, Removed or Undecided

[13]. Features with the state Bound or Removed are state-decided, while Undecided
features remain to be variable. In our ontology-based feature model, the Action fea-
ture also has these three binding-states. However, there is still another binding type,
i.e. specialization of Facet values. For example, the Action FileTransfer can be spe-
cialized to have the value StoreInFile in the application model. In order to describe

96 X. Peng et al.

the binding-state of Action features, we introduce a new ontology property HasState
for Action with two possible value of Bound, Removed and Conflict (denotes the in-
consistent state). And the existing property Facet can represent current state of Facet
value binding. For example, in figure 3, when the Facet HasFilePolicy takes the value
FileSupport, we will know BoardService is chosen to support file and NoFile has
been negated. However, the binding of AnyFile or PicFile is still undecided.

For feature constraints, the basic relationships are Require and Mutex. They have
the following semantics: (1) (a Require b) denotes that binding of feature a depends
on the binding of feature b; (2) (a Mutex b) denotes feature a and b can not be bound
at the same time. All constraints will be converted to these two basic relations and
then be validated.

Property 4: Decomposition constraints
Description: Binding of an Action depends on the binding of its mandatory elements
and Use suppliers.
Ontology Rule:
[(?a ?h ?b), (?h rdfs:subPropertyOf HasElement), (?h IfOptional false) -> (?a
Require ?b)].
[(?a ?u ?b), (?u rdfs:subPropertyOf Use), (?u IfOptional false) -> (?a Require ?b)].

Property 5: Action specialization constraints
Description: If one and only one variant of an Action is bound, it is bound itself.
Note that subClassOf denotes the direct inheritance defined in the meta-model (not
the transitive rdfs:subClassOf in OWL).
Ontology Rule:
[(?a rdfs:subClassOf Action), (?a subClassOf ?b) -> (?a Require ?b)];
[(?c rdfs:subClassOf Action), (?a subClassOf ?c), (?b subClassOf ?c) -> (?a Mutex ?b)].

Property 6: Facet value constraints
Description: Binding of a FacetValue feature depends on the binding of the corre-
sponding Action feature and those FacetValue features with more general value.
Ontology Rule:
[(?f rdfs:subPropertyOf Facet), (?a ?f ?t), (?t subClassOf ?m) -> (?a ?f ?m)];
[(?f rdfs:subPropertyOf Facet), (?a ?f ?t), (?v rdfs:subPropertyOf FacetValue), (?f ?v
?t) -> (?a Require v?)];
[(?v rdfs:subPropertyOf FacetValue), (?f ?v ?t), (?a ?f ?m) -> (?v Require ?a)].

Property 7: Configuration dependency constraints
Ontology Rule:
[(?b Decide ?a) -> (?a Require ?b)];
[(?a ConfigDepend ?b) -> (?a Require ?b)].

Property 8: Binding constraints
Ontology Rule:
[(?a Require ?b), (?a HasState Bound) -> (?b HasState Bound)];
[(?v rdfs:subPropertyOf FacetValue), (?f ?v ?t), (?a ?f ?m) -> (?a ?f ?t)].

 Ontology-Based Feature Modeling and Application-Oriented Tailoring 97

Property 9: Removing constraints
Ontology Rule:
[(?a Require ?b), (?b HasState Removed) -> (?a HasState Removed)];
[(?a Mutex ?b), (?a HasState Bound) -> (?b HasState Removed)];
[(?a Require ?b), (?a Mutex ?b) -> (?a HasState Removed)].

Fig. 6. Segment of OWL representation for the EBBS domain model

3.4 Reasoning-Based Validation

Rules defined in 3.3 capture restrictions among features. In order to derive the valida-
tion conclusions from the model, we define the final rule for conflict as:

[(?a HasState Bound), (?a HasState Removed) -> (?a HasState Conflict)].

Besides the feature model, users should also specify the mandatory features in the
model. These mandatory features (usually the top service features) will be represented
by the relation of (feature HasState Bound). Then we can convert the OWL model
into RDF statements and store them in a database (such as MySQL in our implemen-
tation) with Jena [14]. The conversion is executed along with the reasoning based
on the inference rules, including basic rules (e.g. RDFS and OWL axioms) and
user-defined rules.

After reasoning and RDF statements storage, we can get the validation result di-
rectly from the database by the RDF triples of (a HasState Conflict). If there is no
such statement, then the model is valid. Otherwise, the model is inconsistent denoting
an invalid original domain model or tailoring decisions. However, we can see in sec-
tion 4 that the tailoring process can be guided by reasoning to avoid invalid decisions.

Besides consistency, nonredundancy and necessity are also identified as properties
of well-formed domain feature models in [10]. These two properties can also be

……
<rdf:Property rdf:about="#HasElement">
 <rdfs:range rdf:resource="#Action"/>
 <rdfs:domain rdf:resource="#Action"/>
</rdf:Property>
<owl:DatatypeProperty rdf:ID="ifOptional">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>
 <rdfs:domain rdf:resource="#Use"/>
 <rdfs:domain rdf:resource="#HasElement"/>
</owl:DatatypeProperty>
<owl:Class rdf:ID="BBSService">
 <EBBS:BBSService-MsgDisplay rdf:resource="#UserLogin"/>
 <EBBS:BBSService-MsgDisplay rdf:resource="#MsgDisplay"/>
 <EBBS:BBSService-BoardService rdf:resource="#BoardService"/>
 <EBBS:BBSService-MailService rdf:resource="#MailService"/>
 <rdfs:subClassOf rdf:resource="#Action"/>
</owl:Class>
<rdf:Property rdf:ID="BBSService-MailService">
 <rdfs:subPropertyOf rdf:resource="#HasElement"/>
 <EBBS:IfOptional>true</EBBS:IfOptional>
</rdf:Property>
<rdf:Property rdf:ID="Facet">
 <rdfs:range rdf:resource="#Term"/>
 <rdfs:domain rdf:resource="#Action"/>
</rdf:Property>
<rdf:Property rdf:ID="NeedProtocol">
 <rdfs:subPropertyOf rdf:resource="#Facet"/>
</rdf:Property>
<owl:Class rdf:about="#MsgDisplay">
 <EBBS:NeedProtocol rdf:resource="#Protocol"/>
 <rdfs:subClassOf rdf:resource="#Action"/>
</owl:Class>
……

98 X. Peng et al.

validated by reasoning: violation of nonredundancy means some variation features are
set to be Removed, and violation of necessity means some variation features are set to
be Bound (mandatory).

4 Application-Oriented Tailoring

The domain model needs to be customized in application engineering. In the instantia-
tion process generic assets provided by the domain are configured to build a particular
application [2]. After that, reuse decisions for domain assets and development of
product-specific assets can be made. So application-oriented tailoring of the domain
model is essential for successful product development. Two methods of requirement
customization, free selection and discriminant-based selection, are identified in [15].
The former allows engineers to select requirements from the product line model
freely, while the latter uses constraints and permits choices to be made only at dis-
criminant points. In our opinion, free selection is likely to be used for immature
domains, while discriminant-based selection looks fit for mature, steady and thor-
oughly-analyzed domains. Discriminant-based selection is chosen to be supported in
our method, since it can ease the tailoring and strictly ensure the consistency between
domain and application feature models.

Domain models in practice are often large and complex, so two mechanisms are
provided to ease the tailoring. First, the model can be customized gradually with the
hierarchical modules. When tailoring is executed in a hierarchy, only features or mod-
ules (see 2.5. Modularity Mechanism) in the same hierarchy are involved. After that,
tailoring process is executed within each module involved in the upper hierarchy. It is
obvious that well-designed hierarchy and modularity is essential for the effect of this
principle. Second, the tailoring can be guided by identification of free variable for
customization. A free variable means a variation feature on which no other variation
feature depends for binding. Identification of active points is obvious: those variation
features do not appear as the object of Require statements in the ontology. Also, in a
well-designed model, free variables usually appear in upper hierarchies relative to
passive variables.

5 Evaluation and Conclusion

A strictly-defined formal basis is essential for applicable feature modeling. In this
paper, ontology is introduced as the definition foundation of the feature meta-model.
Ontology has been widely adopted in domain knowledge modeling and has corre-
sponding modeling language, such as OWL. So the feature model can be easily
converted into formal ontology model. Furthermore, rule-based reasoning can be
performed on the ontology model for model validating and tailoring guidance.

Establishing a mapping between domain model and the architecture is the objective
of domain engineering [16]. However, there is a large gap between the problem space
and the solution space. We can reduce the gap by establishing a smooth transition
from elements in the domain model (i.e. features) to elements in the architecture
model (i.e. components). In our research, domain ontology (i.e. the ontology-based
feature model) is also representation basis for component semantics. We can first map

 Ontology-Based Feature Modeling and Application-Oriented Tailoring 99

the feature model to conceptual architecture, which defines business function assign-
ments among components and semantic interactions between them. Then the concep-
tual architecture can be converted into the artifact architecture by combining technical
factors (e.g. the component model and platform).

The ontology-based method has been implemented in OntoFeature (depicted in
figure 7), an ontology-based feature modeling tool. It supports multi-view feature
modeling and generation of the integrative feature diagram. Generation and validation
of ontology model are also implemented by Jena APIs integrated in it. In the process
of application-oriented tailoring, the tool provides a stepwise guidance through
active-variations analysis.

Currently, our work is focusing on feature-driven DSSA design and architecture
customization. Besides domain modeling and design, we are also interested in feature-
oriented component composition, requirements trace and change management. Our
final goal is to provide all-life-long support for feature-oriented domain and applica-
tion development, including methods and corresponding tool set.

Fig. 7. Snapshot of OntoFeature tool

Acknowledgments. This work is supported by the National High Technology Devel-
opment 863 Program of China under Grant No. 2004AA113030, 2005AA113120, the
National Natural Science Foundation of China under Grant No. 60473061, the Sci-
ence Technology Committee of Shanghai under Grant No. 04DZ15022. We would
like to thank the members of the Feature Engineering group of our Software Engi-
neering Lab, especially Jianhua Gu, Liwei Shen, Yiming Liu, etc.

References

1. Kang, Kyo C., Sholom G. Cohen, James A Hess, William E. Novak, and A. Spencer Pe-
terson: Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA.

100 X. Peng et al.

2. V. Cechticky, A. Pasetti, O. Rohlik, and W. Schaufelberger: XML-Based Feature Model-
ling. ICSR 2004, LNCS 3107, p.101–114, 2004. Springer-Verlag.

3. Mike Mannion: Using First-Order Logic for Product Line Model Validation. SPLC2 2002,
LNCS 2379, p.176–187, 2002. Springer-Verlag.

4. Schlick, M., and Hein, A.: Knowledge Engineering in Software Product Lines. European
Conference on Artificial Intelligence (ECAI 2000), Workshop on Knowledge-Based Sys-
tems for Model-Based Engineering, August 22, 2000, Berlin, Germany.

5. Rubén Prieto-Díaz. A faceted approach to building ontologies. Proceedings of IEEE Inter-
national Conference on Information Reuse and Integration (IRI 2003). 2003: 458~465.

6. Rosario Girardi, Carla Gomes de Faria. An ontology-based technique for the specification
of domain and user models in multi-agent domain. CLEI electronic journal, Vol.7(1),
2004.

7. Vijayan Sugumaran, Veda C. Storey. A semantic-based approach to component retrieval.
ACM SIGMIS Database, Vol.34:pages 8-24, 2003.

8. Sean Bechhofer, et al. Owl Web Ontology Language Reference”, http://www.w3.org/TR/
owl-ref/, 2004-02-10.

9. Carlton Reid Turner, Alfonso Fuggetta, Luigi Lavazza, Alexander L. Wolf: A conceptual
basis for feature engineering. Journal of Systems and Software 49(1): 3-15 (1999).

10. Hong Mei, Wei Zhang, Fang Gu: A Feature Oriented Approach to Modeling and Reusing
Requirements of Software Product Lines. Proceedings of the 27th Annual International
Computer Software and Applications Conference (COMPSAC’03).

11. Kwanwoo Lee and Kyo C. Kang: Feature Dependency Analysis for Product Line Compo-
nent Design. ICSR 2004, LNCS 3107, p. 69–85, 2004. Springer-Verlag.

12. 12.Wei Zhang, Hong Mei, Haiyan Zhao: A Feature-Oriented Approach to Modeling Re-
quirements Dependencies. Proceedings of the 2005 13th IEEE International Conference on
Requirements Engineering (RE’05).

13. Wei Zhang, Haiyan Zhao, Hong Mei: A Propositional Logic-Based Method for Verifica-
tion of Feature Models. ICFEM 2004, LNCS 3308, p. 115–130, 2004. Springer-Verlag
Berlin Heidelberg 2004.

14. Jena home. http://jena.sourceforge.net.
15. M.Mannion, H. Kaindl, J. Wheadon: Reusing Single System Requirements from Applica-

tion Family Requirements. Proceedings of the 1999 International Conference on Software
Engineering, ICSE1999.

16. Kyo C Kang , Sajoong Kim , Jaejoon Lee , et al. FORM: A Feature-Oriented Reuse
Method with Domain-Specific Reference Architectures. Annals of Software Engineering,
1998,5 :143 168.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 101 – 114, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The COVAMOF Derivation Process

Marco Sinnema, Sybren Deelstra, and Piter Hoekstra

University of Groningen, 9700 AV Groningen
{m.sinnema, s.k.deelstra}@rug.nl,

p.s.hoekstra@student.rug.nl

Abstract. The design, usage and maintenance of variability, i.e. variability man-
agement, is a very complex and time-consuming task in industrial product fami-
lies. The COVAMOF Variability Modeling Framework is our approach to enable
efficient variability management. As a practical realization of COVAMOF,
swe developed the COVAMOF-VS tool suite, which provides several variability
views on C#, C++, Java, and many other types of projects in Microsoft Visual
Studio .NET. In this paper, we show how COVAMOF facilitates an engineer dur-
ing product derivation, and what benefits are gained by it.

1 Introduction

A software product family is an approach to reuse that involves creating a collection of
similar software systems from a reusable set of software artifacts [1][2][13]. As prod-
uct families promise order of magnitude improvements in quality and productivity of
software development, more and more organizations are adopting this approach [7].

The ability to derive distinct products from a product family is supported through
variability, i.e. the ability of a software system or artifact to be extended, changed,
customized or configured for use in a specific context. On the one hand, variability is
enabled through variation points, i.e. the locations in the software that enable choice
at different abstraction layers (features, architecture and implementation layer). Each
variation point is associated with a number of options (represented by variants or
values). On the other hand, the possible configurations that can be build with these
variation points are restricted due to dependencies that exist between variants, and the
restrictions that are imposed upon these dependencies.

Product derivation in software product families involves making a large number
choices (up to ten thousands [4]) at variation points in the available artifacts (at fea-
ture [6], architecture, and implementation level). These large numbers make it hard to
manage all variation points by humans. Even though it is absolutely necessary to
handles these numbers effectively, however, there are even more complicated issues
in managing variability.

In Sinnema et al. [11], for example, we discussed variability management issues
that are the result of complex dependencies. Consider, for example, a design where
the maximum processing time of data is constrained. The configuration of many
variation points in the design influence this maximum processing time. The complex
dependency (or value of the property) maximum processing time is the result of the
combination of variants that is selected at each of these variation points. Determining

102 M. Sinnema, S. Deelstra, and P. Hoekstra

the value of this property is typically much more complicated than handling simple
logical in- and exclusions.

The complications for complex dependencies are primarily caused by the fact that
the knowledge that is available for these dependencies is often tacit (in minds of ex-
perts) [8], incomplete, and imprecise. In addition, complex dependencies suffer from
dependency interaction, i.e. that due to the fact that several variation points are in-
volved in multiple dependencies, trying to meet the constraints on a particular de-
pendency value may influence other dependency values as well. For an extensive
discussion on these issues, see Sinnema et al. [11].

Existing software variability modeling approaches and tools are inadequate to han-
dle these variability management issues [10]. In response, we developed our own
variability modeling framework COVAMOF [10]. This framework consists of
modeling facilities that model the variation points and dependencies uniformly over
different abstraction levels (e.g. features, architecture and implementation), and as
first-class citizens. As part of our framework, we developed the COVAMOF-VS tool
suite. The COVAMOF-VS tool suite is a set of Add-ins for Microsoft Visual Studio.
NET [9]. It is designed for creating variability models of a product family, and using
these models for configuration of individual products.

In earlier work [10], we focused on presenting the modeling concepts in
COVAMOF. Before a modeling framework can be used to manage variability in a
product family, however, it should be clear how the model needs to be created, main-
tained, and used. The purpose and contribution of this paper lies in showing how such
a model is used during product derivation, and how COVAMOF facilitates a software
engineer when he/she needs to derive a product from the product family.

In order to provide a concrete description of the COVAMOF Derivation Process,
we discuss this process according to how the tool-suite is used, and provide initial
results of the validation of COVAMOF. To present the derivation process in a concise
manner, we first present a brief example that is used for illustrating our message. In
section 3, we provide an introduction to COVAMOF and the COVAMOF-VS tool-
suite. In section 4, we show the practical benefits of COVAMOF according to differ-
ent steps in the derivation process. We revisit the core issues we mentioned above in
section 5, and show how they are addressed by our approach. In section 6, we present
a summary of empirical validation we gained by applying our approach at an indus-
trial organization. We conclude this paper in section 7.

2 Example Case

To illustrate COVAMOF, we use an example in this paper (see also Fig. 1). This
example originates from a product family that is built by the same organization from
which we use empirical results to validate COVAMOF. The example involves a prod-
uct family that is built on top of the product family we use in the validation. Most of
the variability in this example has been abstracted away, or simply left out, so that the
reader can easily grasp the example. The purpose of this small example is not to vali-
date COVAMOF, but to explain some of the basic concepts.

The example involves a product family in the domain of license plate recognition
on handhelds (PDAs, and smartphones). License plate recognition on handhelds in-
volves automatically recognizing license plates on images captured through a camera.

 The COVAMOF Derivation Process 103

These license plates are on- or offline checked against a white/blacklist using com-
munication channels such as WAN, Bluetooth, GPRS, or cable. The products in this
example are modules that a customer uses to rapidly build their own handheld recog-
nition application. The modules for example offer a view-port for displaying camera
images, an interface for a license plate recognition engine, as well as communication
services.

Fig. 1. Example product family. This figure shows a picture of the HP iPaq 3715 running the
application (left) and some examples of the variability (in terms of choices) provided by the
product family (right).

3 COVAMOF

In order to support product family engineers, we developed the COVAMOF Variabil-
ity Modeling Framework and the associated tool-suite for Microsoft Visual Studio
.NET [9] (COVAMOF-VS). Although the focus of this paper is to explain how
COVAMOF helps software developers to choose the right variants and settings that
satisfy the constraints and functionality required for a new product, we first need to
explain the basic concepts of COVAMOF. In the following sections, we discuss these
concepts according to the two main views provided by the COVAMOF-VS tool-suite.

3.1 COVAMOF, Introduction

As we mentioned in section 1, COVAMOF is a framework for modeling variation
points and dependencies uniformly over different abstraction levels (e.g. features,
architecture and implementation), and as first-class citizens. This framework enables
providing different views on the variability provided by product family artifacts. At
this point, the tool-suite COVAMOF-VS provides two main graphical views, i.e. the
variation point view, and the dependency view (see Fig. 2).

To provide these views, COVAMOF-VS maintains an integrated variability model.
This model is constructed by reading variability information from the collection of
files in the active Solution in Microsoft Visual Studio. The active Solution in MS
Visual Studio contains the artifacts that constitute the software product family. The
Solution can contain very different artifacts, e.g. XML-based feature models, start-up
parameter specifications and C# source files.

104 M. Sinnema, S. Deelstra, and P. Hoekstra

COVAMOF Variability ViewsProduct Family Artifacts

La
ye

r
of

 a
bs

tr
ac

tio
n

Feature Model

Architecture

Component implementations

Variation Point
View

View

...

Dependency
View

Fig. 2. COVAMOF Views. By treating dependencies and variation points as first-class citizens,
COVAMOF enables providing a seperate dependency view on the variability provided by a
product family.

The variability information in these artifacts is either directly interpreted from lan-
guage constructs (such as #ifdef), or is based on special constructs from the
COVAMOF variability language XVL. While we eventually strife for extending a
programming language with these constructs, variability information in code files is
currently inserted as comments. These constructs are inserted in the solution artifacts
at the time they are under development, or afterwards using a variability modeling
process as discussed in section 4.

The extraction of variability information is done by plug-in components that regis-
ter themselves on one or more file types. These components convert the extracted
variability to parts of the COVAMOF variability model. They are also responsible for
feeding additions and changes in the views directly back into the files of the MS
Visual Studio Solution.
Once the model is constructed, it can be viewed graphically in the variation point and
dependency view. The variation point and dependency view each serve a specific
purpose. In the following two sections, we discuss the entities in the COVAMOF
model (see Fig. 3) according to these different views. In section 4, we discuss how
these views are used during product derivation.

Fig. 3. The COVAMOF Meta-model

3.2 COVAMOF, the Variation Point View

The main purpose of the variation point view is to show to the engineer, which choices
are available at different abstraction layers, how they realize each other across layers,
and how choices depend upon each other. The variation point view contains the follow-
ing entities: Variation Point, Variant, Realization and Dependency (see also Fig. 3).
These entities are illustrated with a screenshot from the example case (see Fig. 4).

 The COVAMOF Derivation Process 105

Variation Point: Variation Points in COVAMOF represent the location at which a
choice is provided by the product family. A Variation Point entity has a number of
properties, for example for storing the abstraction layer the choice is located in (ab-
straction layer), the moment in the lifecycle at which the choice is bound (binding
time), and storing the reason why a choice is provided (rationale). The different op-
tions that are available for a choice are represented by a value, or by a set of variants
that are associated to the Variation Point.

Variant: Variant entities represent the options that are available at a Variation Point.
While values are used to represent parameters, Variants can represent anything from
an object or class, to a file, or a code-block. The effectuation property of a Variant
specifies the effectuation actions that should be executed in the product family arti-
facts when the variant is selected. Examples of such effectuation actions are the gen-
eration of a configuration file, the setting of compiler directives and the specification
of libraries that have to be linked.

Example. The screenshot in Figure 4 shows a Variation Point ‘Supported OS’, with
Variants, ‘Symbian’, ‘Windows CE’, and ‘Windows Mobile 2003’. The Variation Point
is situated in the feature layer. The information displayed here tells that a software en-
gineer has the option to choose to derive a product that runs on one of these three op-
erating systems.

Realization: The Variation Point entities are hierarchically organized over abstrac-
tion levels. In this hierarchy, variation points in lower levels of abstraction realize the
variability on a higher level abstraction. Realization relations specify rules that de-
termine which variants or values at variation points at lower levels should be selected
in order to realize the choice at variation points at higher levels.

The purpose of explicitly modeling these relations in the variability model is two-
fold: first, as the realization relations capture the knowledge about how variation
points realize other variation points, COVAMOF-VS can automatically infer choices
on a higher level of abstraction to choices on a lower level of abstraction, reducing the
human effort to configure products. Second, the hierarchical organization of variation
points structures the variability in such a way that a software engineer does not have
to consider all the variation points at once. Instead, he can just focus on one relevant
subset of all the variation points. For example, he can just focus on the high level
variation points that realize the overall product family variability, or just focus on the
lower level variation points that together realize only one aspect of the product line
variability. Therefore, it allows humans to manage the complexity caused by large
numbers of variation points in industrial product families.

Example. In Figure 4, the Realization relation from ‘CameraInterface Implementation’
to ‘Supported OS’ specifies that different implementations for the Camera Interface re-
alize the ability to choose between supported operating system. The rules at this Reali-
zation (not shown in Figure 4), specify which CameraInterface Implementation should
be selected when a particular OS is chosen. An observing reader may note from other
Realization relations that there is a strong coupling between Operating System, Device,
and CameraInterface implementation.

106 M. Sinnema, S. Deelstra, and P. Hoekstra

Dependency: The COVAMOF variability model captures both simple and complex
dependencies (see also section 1). These dependencies are represented as Dependency
entities in the variability model. They specify a mapping from the configuration of a
set of Variation Points to a value in a specific 1-dimensional domain. In plain Eng-
lish, this means that if you select Variants or a value at Variation Points (called the
configuration), the Dependency maps this selection to a value for a property (the tar-
get domain) such as maximum processing time or memory consumption. We refer to
the set of Variation Points whose configuration influences the value as the associated
variation points. The model combines two ways of capturing the knowledge about
how the configuration of the associated variation points maps to a value in the target
domain, i.e. by Association entities and Reference Data entities.

Association: The first way to capture this knowledge is by Association entities, which
are part of a Dependency. These Associations refer to the Variation Points whose
configuration affects the value of the Dependency. Each Association corresponds to
the relation with one Variation Point. COVAMOF distinguishes between three types
of Associations. In increasing order of completeness of the knowledge about the asso-
ciations, these are Abstract, Directional, and Logical Associations. An Abstract Asso-
ciation means that experts only know that a relation between the Variation Point and
Dependency exists, but have no way of predicting the effect of selecting a different
Variant or value at the Variation Point. A Directional Association means that experts
have an idea about the direction in which the value of a dependency will change when
a different value or Variant is selected. In case of Logical Associations experts know

Fig. 4. A screenshot of the example case in COVAMOF-VS. This figure shows some of the
variation points and dependencies that are involved to provide the variability of the example
case we discussed in section 3.

 The COVAMOF Derivation Process 107

exactly how the value of a dependency will change when a different Variant or value
is selected. Product family experts can enrich the Associations with textual hints that
explain how variation points can be reconfigured in order to obtain a certain value.

The type of associations of a Dependency influences the type of the Dependency.
In COVAMOF, we distinguish between Statically Analyzable and Dynamically Ana-
lyzable Dependencies. For Statically Analyzable Dependencies, the exact value can
be calculated before running the system, which requires Logical Associations. The
exact value of Dynamically Analyzable Dependencies can only be determined by
running and measuring the system, which is the case if the Dependency contains
Abstract and Directional Associations.

Reference Data: The second way of capturing the knowledge about how the configu-
ration of the associated variation points maps onto the value of a dependency is mod-
eling reference data. Reference Data entities contain measurements of the value of a
Dependency for specific configurations of the associated Variation Points. These
measurements originate from tests of products that have been derived from the prod-
uct family. These Reference Data entities can in turn be analyzed to determine how
single Variation Points affect the Dependency. The results of this analysis are in turn
stored in the Associations.

Example. In Figure 4, the Dependency ‘Framerate’ is associated to the three Variation
Points ‘Device’, ‘VIEWPORTSIZE.HEIGHT’, and ‘VIEWPORTSIZE.WIDTH’. The first
Variation Point refers to the handheld device that can be chosen, while the latter two
Variation Points refer to configuration parameters that set a view-port size. The infor-
mation displayed in Figure 4 therefore shows that the ‘Framerate’ of the application,
i.e. the number of times/second an image is displayed, is dependent on the size of the
view-port, and the selected handheld device. The Directional Associations specify how
the frame-rate depends on these Variation Points (not shown in Fig. 4).

3.3 COVAMOF, the Dependency View

The dependency view contains Dependencies and Dependency Interactions (see
Fig. 3). The main purpose of this view is to show how dependencies interact with
each other, and how an engineer can cope with these interactions.

Dependencies: Dependencies in the dependency view are representations of the same
dependencies that are represented in the variation point view. In the dependency view,
however, they only show which dependencies exists, and do not show the relation-
ships between variation points.

Dependency Interaction: In the introduction, we explained that dependency interac-
tion occurs when variation points are part of multiple dependencies. Although the sets
of dependencies that interact can be generated from the dependencies and their asso-
ciations, COVAMOF also explicitly captures Dependency Interaction entities in the
variability model. These entities allow a software engineer to specify, for a set of
dependencies, how to cope with the shared associated variation points during product
derivation. This textual specification is documented by product family experts. It
contains a strategy for developing a reasonable first guess during the initial phase, and
a strategy to optimize the values in the iteration phase of product derivation.

108 M. Sinnema, S. Deelstra, and P. Hoekstra

4 COVAMOF Derivation Process

Product derivation is the construction of a software product that is built by selecting
and configuring product family artifacts. With COVAMOF, products are derived by
the COVAMOF Derivation Process. This process allows organizations to gain maxi-
mum benefit from COVAMOF and its associated tool support. This COVAMOF
Derivation Process is divided into four steps, i.e. Product Definition, Product Con-
figuration, Product Realization, and Product Testing. As visualized by Fig. 5, the last
three steps can occur in one or more iterations. The following subsections describe
these four steps respectively.

COVAMOF Derivation Process

Product
Definition

Product
Configuration

Product
Realization

Product
Testing

Product
Definition

Product
Configuration

Product
Realization

Product
Testing

ReadyStart

Fig. 5. The COVAMOF Derivation Process. This iterative process breaks down into four steps,
i.e. Product Definition, Product Configuration, Product Realization and Product Testing.

4.1 Product Definition

The first step of the COVAMOF Derivation Process is called Product Definition. In
this step, the engineer creates a new Product entity in the variability model. In re-
sponse, COVAMOF-VS stores this product in the active Solution of Visual Studio.
The properties of Product entities are the customer, a unique name for the product,
and variation points that have been bound for the product. The latter are described by
bindings of variation points, i.e. combinations of variation points together with their
selected variants or parameter value. The engineer can directly fill in the customer
and name property. For the bindings of the variation points, one or more iterations of
the Product Configuration step are required.

4.2 Product Configuration

In order to start the Product Configuration step, the engineer selects the Product entity
from the available products dropdown menu in the COVAMOF-VS toolbar. From
that point, COVAMOF-VS is in configure mode and additional configuration infor-
mation about the product at hand is shown in both variability views.

When the variation point view of COVAMOF-VS is in configure mode, the varia-
tion points that are bound for the product at hand are marked by a different color.
During the Product Configuration step, the engineer binds one or more variation
points to new values or variants based on the customer requirements. In order to bind
these variation points, he marks the new variants or specifies the new values in the
variation point view. The order in which variation points are bound is dynamically
determined by the realization relations and dependencies in the variability model.

 The COVAMOF Derivation Process 109

Meanwhile, the binding of a variation point is effectuated by creating or updating
the relation between the Product entity and the Variation Point entity. Each variation
point that is bound triggers the inference engine and the validation engine to work:

- Inference Engine: As described in section 3.2, the rules of Realization Relations
define how variation points on a lower level of abstraction realize variation points
on a higher level of abstraction (see also Fig. 4). These rules are used by the in-
ference engine to automatically bind variation points on a lower level of abstrac-
tion. The binding of these variation points is based on the binding of the variation
points on a higher level of abstraction. For each rule that the variation point is in-
volved in, the consequences are recursively determined.

- Validation Engine: After a variation point is bound by the engineer and the
inference engine has worked, the validation engine automatically checks whether
no dependencies have been violated. The rule of each statically analyzable de-
pendency is checked and for each dynamically analyzable dependency the refer-
ence data elements are checked. Based on the rules, the associations and the
reference data, the dependencies in the variation point view are provided with the
new estimated value. Any violations of these values with respect to the required
values are immediately fed back to the engineer by marking the dependencies in
the variation point view with the color red.

The customer requirements can be separated into functional requirements and non-
functional requirements. Therefore, the engineer basically has two main concerns
during product configuration. First, the right features and components should be se-
lected so that the functional requirements are met. Second, the configuration is tuned
and adapted to meet the non-functional requirements. The Realization Relation and
Dependency entities in the variability model support the engineer in configuring a
product that meets the functional as well as the non-functional requirements. How
these two entities can be used is explained below. Note that in practice, the engineer
has to take both into consideration at the same time.

- Realization relations: In order to select the right features and components, the
engineer binds variation points in the feature layer. The variation points in the ar-
chitecture layer can be bound using rules of the Realization Relations between
the feature layer and the architecture layer. In case the inference engine was un-
able to automatically bind these variation points in lower layer of abstraction, the
engineer has to bind them manually. Similarly, the variation points in the compo-
nent layer can be bound by using the realization relations between the component
layer and the architecture and feature layer.

- Dependencies: The dependency entities in the variability model support the
engineer in binding variation points in such a way that the product is consistent
and meets the non-functional requirements. When Product Configuration starts,
the engineer specifies, for each of the dependencies the specific value or range
that is required for the product at hand. The variation point view of COVAMOF-
VS in configure mode shows the (estimated) value of each of the dependencies
together with the required value or range. When the actual value is outside the re-
quired range, i.e. the Dependency is violated, the dependency in the variability
view is colored red.

110 M. Sinnema, S. Deelstra, and P. Hoekstra

The goal of engineers is to (re)bind the variation points in such a way that
none of the dependencies are violated. During iterations, the engineer therefore
has to shift the value of each violated Dependency into the required range. The
information in the Associations and the Reference Data of the Dependency entity
are used to determine how the current value can be changed in order to meet the
required range.

As Logical Associations specify exactly how the (re)binding of a variation
point changes the value, this formalized knowledge can easily be used to change
the value of the Dependency, and the effect is immediately visible in the variation
point view. The documented knowledge in the Directional Associations can be
used to increase or decrease the value in the right direction. However, a Product
Test (section 4.4) is required to determine the new value of the Dependency. How
Abstract Associations can be used can only be determined by any reference data
available. Otherwise, the engineer has to use the tacit knowledge of an expert or
even trial-and-error to change the value of the Dependency.

Note that the process of changing the values of Dependencies is a very com-
plicated task. This is particularly due to the interaction between Dependencies
like we described in the introduction. In such situations, the engineer uses the
information of the corresponding Dependency Interaction entities in the depend-
ency view (section 3.3). This information helps the engineer in making reason-
able trade-offs between system properties and a strategy to accomplish the
acceptable values, for example, which Dependency should be resolved first and
which should be resolved later in the process.

Usually, the focus during the initial iteration of the COVAMOF Derivation Process is
on satisfying the functional requirements, and, as the product functionality becomes
more and more fixed, the focus gradually shifts to satisfying the non-functional re-
quirements. This does not imply that functional requirements are more important.
Functional properties are usually the easy aspect during product derivation, and
generally have to be known in order to say something meaningful about the non-
functional properties.

When the engineer is unable to bind additional variation points without testing the
configuration at hand, the COVAMOF Derivation Process goes to the next step, Prod-
uct Realization.

4.3 Product Realization

In order to get a complete software product, the Product has to be realized in the
product family artifacts. In COVAMOF-VS, the product is realized by pressing the
Realize button in the toolbar of COVAMOF-VS. As a result, COVAMOF-VS exe-
cutes the effectuation actions for each of the variants that are selected for the Product
entity (see also section 3.2).

Thereafter, Visual Studio builds the active Solution, resulting in the binaries that
are used together with the configuration files to test the product in the next step.

 The COVAMOF Derivation Process 111

Example. The example in Figure 4 contains the Variation Points
‘VIEWPORTSIZE.HEIGHT, and ‘VIEWPORTSIZE.WIDTH’. When during the Product
Configuration step these variation points both have been bound to 120, the following
start-up parameters are specified in the configuration file mobileapp.ini:

[Viewport]
Height=120
Width=120

4.4 Product Testing

The goal of the testing phase is to determine whether the product meets both the func-
tional and the non-functional requirements. When, during testing, the realized product
appears to satisfy all requirements, the software product can be packed and shipped to
the customer. Otherwise, one or more additional iterations of a Product Configuration
and Product Realization steps are required.

In any case, the values of the dynamically analyzable Dependencies that have been
determined during the test are fed back into the variability model as Reference Data.
In this way, the COVAMOF variability model is gradually enriched and improved to
provide better estimated values during Product Configuration steps in the future.

5 Benefits

COVAMOF and COVAMOF-VS were created to address the issues that are experi-
enced by software engineers in many industrial families (see e.g. Deelstra et al. 2005
[4]). In section 3 and 4, we discussed the main entities in the COVAMOF meta-model
(see also Fig. 3), and showed how they provide practicable benefits during product
derivation. In this section, we summarize how the combination of COVAMOF and
COVAMOF-VS addresses the variability management issues we discussed in the
introduction.

1. Effectively handling complex dependencies. Instead of modeling dependencies
between two variants, dependencies in COVAMOF group relations on the level of
variation points. This allows specifying complex dependencies between multiple
variants that would otherwise translate into a large amount of dependencies between
variants. This grouping furthermore provides a more abstract view on relations be-
tween choices, thus reducing the overall complexity of the variability model. As the
dependencies are first-class, COVAMOF is also able to provide a separate depend-
ency view that shows the interaction between them.

2. Ability to use imprecise, tacit and documented knowledge. In addition to the
formal specification of the variability model, COVAMOF explicitly deals with tacit,
documented, and formalized knowledge through the different types of dependencies.
Although tacit knowledge is not represented in a COVAMOF model (otherwise, it
wouldn’t be defined as tacit), COVAMOF deals with tacit knowledge by enabling
references to the experts that possess this knowledge (e.g. through names, phone num-
bers, etc.). This may seem silly, but the importance should not be underestimated: it
allows (less experienced) engineers to call-in the right assistance.

112 M. Sinnema, S. Deelstra, and P. Hoekstra

Documented and formalized knowledge are handled in several ways. The Refer-
ence Data and Associations at Dependencies enable storing useful product derivation
knowledge, e.g. in terms of links to documents, graphs, and formulas. The test results
for a Dependency in a particular configuration can be reused to know or estimate the
value of a Dependency in a new configuration. Multiple data points can be general-
ized to variants with specific properties, and the results can be stored into Associa-
tions. As we explained in section 4, these Associations are used during the
COVAMOF Derivation Process to estimate the impact of choices on dependencies.

All these facilities allow organizations to start with a minimal amount of formaliza-
tion that can pay off immediately. This model can be gradually extended when organ-
izational maturity grows and more precise knowledge becomes available, or when
more benefits are perceived for the externalization.

3. Dependency interaction. To reduce the expert involvement and number of itera-
tions, the problem of dependency interaction is addressed by explicitly capturing
Dependency Interaction entities. These entities specify a strategy that suggests to an
engineer, which steps he/she should follow in trying to satisfy a particular set of inter-
acting dependencies.

6 Validation

We are involved in a case study that introduces COVAMOF in an industrial setting.
The subject of this case study is the Intrada product family of Dacolian B.V. Intrada is
an industrial product family for complex intelligent traffic systems such as license
plate reading, tolling, and parking applications [3]. At this point, the variability model
has been integrated into the software product family. Dacolian B.V. is in the process
of collecting data with respect to the use of COVAMOF, such as number of man-
hours and iterations saved, as well as data on the experience of engineers with the
tools. For each product derived, they keep track of which variation points are bound
in the iterations of the COVAMOF Derivation Process, and how many hours are re-
quired to perform each step.

Although we cannot yet present the definitive quantitative results of this case
study, Dacolian B.V. already provided interesting qualitative observations. First of all,
Dacolian B.V. is convinced that COVAMOF saves an enormous amount of man-
hours. Before the introduction of COVAMOF, the derivation of a typical product
from the product family required about one day of work. Now, their engineers can
derive the same product within a quarter of an hour. Below, we provide some detailed
qualitative observation we received from Dacolian B.V.:

- Number of iterations reduced: “The engineers are provided with much more
useful information about the choices they have to make and dependencies they
have to consider. As a result, the decision making of the engineers has improved
and they are able to make better estimations for the variants and values that have
to be selected. Therefore, the iterations required for a typical product derivation
process has been reduced from 10-12 iterations to 0-2 iterations after the intro-
duction of COVAMOF. This reduction of iteration, together with the automatic
inference of bindings, resulted a dramatic reduction of required man-hours”.

 The COVAMOF Derivation Process 113

- Finding Conflicts: “Before we were able to implement the variability model of
the product family, we had to externalize the variability information from the
product family artifacts and the experts. During this externalization process, en-
gineers and experts from our organization found many (previously unknown)
conflicts in their own artifacts. This has, and will save us a lot of unforeseen
problems”.

- Development and Evolution: “A substantial part of the products of Dacolian
B.V. are based on the automatic recognition of license plates. One key variation
point for this family is the collection of countries of which license plates can be
recognized. Before the introduction of COVAMOF only product line experts
were able to extend the number of supported countries, i.e. implementing a new
variant for this variation point. After COVAMOF has been implemented, with all
major dependencies externalized, also engineers that are not involved in the
product family are able to extend the number of supported countries. This re-
duced the workload of the product line experts”.

7 Conclusion

Software variability management is an important factor in the success of a product
family. It is also a complex task, where key issues such as handling complex depend-
encies, dealing with imprecise, tacit, and documented knowledge, and dependency
interaction, are inadequately addressed by existing approaches [10].

In this paper, we discussed the COVAMOF Product Derivation Process. We de-
scribed this process using the technical realization of COVAMOF in the form of the
COVAMOF-VS tool-suite. We have shown how the different elements of COVAMOF
address the key variability management issues during product derivation, and sup-
ported these claims with empirical results from an industrial application of
COVAMOF.

References

1. Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving a Product Line
Approach, Pearson Education (Addison-Wesley & ACM Press), ISBN 0-201-67494-7, 2000

2. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns, SEI Series in
Software Engineering, Addison-Wesley, ISBN: 0-201-70332-7, 2001

3. Dacolian B.V.: http://www.dacolian.nl
4. Deelstra, S., Sinnema, M., Bosch, J.: Product Derivation in Software Product Families; A

Case Study, Journal of Systems and Software, Volume 74(2), pp. 173-194, January 2005
5. Deelstra, S., Sinnema, M., Nijhuis, J., Bosch, J.: COSVAM: A Technique for Assessing

Software Variability in Software Product Families, Proceedings of the 20th IEEE Interna-
tional Conference on Software Maintenance (ICSM 2004), pp. 458-462, September 2004

6. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature Oriented Domain Analysis
(FODA) Feasibility Study, Technical Report CMU/SEI-90-TR-021, 1990

7. v.d. Linden, F.: Software Product Families in Europe: The Esaps & Café Projects, IEEE
Software, Vol. 19, No. 4, pp. 41-49, 2002

114 M. Sinnema, S. Deelstra, and P. Hoekstra

8. Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company: How Japanese companies
create the dynasties of innovation. Oxford University Press, New York, 1995

9. Microsoft Visual Studio .NET: http://msdn.microsoft.com/vstudio
10. Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J.: COVAMOF: A Framework for Modeling

Variability in Software Product Families, Proceedings of the Third Software Product Line
Conference (SPLC 2004), Springer Verlag Lecture Notes on Computer Science Vol. 3154
(LNCS 3154), pp. 197-213, August 2004

11. Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J.: Modeling Dependencies in Product Fami-
lies with COVAMOF, Proceedings of the 13th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems, March 2006

12. Spillman, W.J., Lang, E.: The Law of Diminishing Returns, 1924
13. Weiss, D. M., Lai, C.T.R.: Software Product-Line Engineering: A Family Based Software

Development Process, Addison - Wesley, ISBN 0-201-694387, 1999

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 115 – 126, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Metamodel Approach to Architecture Variability
in a Product Line*

Mikyeong Moon, Heung Seok Chae, and Keunhyuk Yeom

Department of Computer Engineering, Pusan National University
30 Changjeon Dong, Keumjeong Ku, Busan, 609-735, Korea

{mkmoon, hschae, yeom}@pusan.ac.kr

Abstract. Architecture describes the organizational structure of a system
including components, interactions, and constraints. Reusable components,
units of software systems, have been considered to support a considerable
improvement in reducing development costs and time to market because their
interfaces and functionality are explicitly defined. Instead of reusing an
individual component, however, it is much more advantageous to reuse a whole
design or architecture. A domain architecture, sharing a common software
architecture across a product line, includes common components shared by all
products and optional components exploited by a subset of the products.
Variability, one of the key concepts in the development of domain architectures
indicates the ability to derive various products from the product line. Clearly,
we need to support variability during domain architecture development. In this
paper, we suggest a metamodeling concept that enables a common under-
standing of architecture variability. The domain architecture metamodel reflects
the Object Management Group's (OMGTM) Reusable Asset Specification (RAS)
which addresses the engineering elements of reuse. We describe a domain
architecture in which commonality and variability are explicitly considered.

1 Introduction

Product line engineering has been considered one of the promising approaches to
successfully bringing products to the market [1]. Emphasizing an extensive reuse of
softwares, software produce line engineering supports seamless reuse in the
application development process. To enable reuse, explicit descriptions of variations
among products of a product line should be specified. Thus, analyzing commonality
and variability between products in a product line is one of the essential concerns that
must be considered when building a product line. The variabilities that are identified
at each phase of a product line development have different levels of abstraction. For
instance, a variation at the architecture level would be more concretely refined than a
variation at the requirements level. In the past, these variabilities have been handled in
an implicit manner and without considering each core asset’s characteristics.

* This research was supported by the MIC(Ministry of Information and Communication),

Korea, under the ITRC(Information Technology Research Center) support program
supervised by the IITA(Institute of Information Technology Assessment).

116 M. Moon, H.S. Chae, and K. Yeom

This paper focuses on variability analysis of architectures in any software product
lines development. The domain architecture captures the structuring rules of the
domain, interaction between components, and the specification of the component.
Each set of component variants and each optional component constitute a variability
point at the architectural level of abstraction. We propose a metamodel that specifies
a domain architecture where commonality and variability are explicitly considered.
The proposed metamodel represents a comprehensive conceptual basis for variability
of architectural models. The domain architecture supports the variation inherent in
the product line by reflecting the Object Management Group's (OMGTM) Reusable
Asset Specification (RAS) [2]. RAS is a set of guidelines for the specification,
development, and application of reusable software assets. We also describe the
variability of the domain architecture by a case study with an e-Travel System
domain.

The rest of this paper is organized as follows: Section 2 introduces our conceptual
layered metamodel architecture. Section 3 describes a Reusable Asset Specification that
is the basis for our domain architecture metamodel, which is presented in Section 4.
In this section, the variabilities identified at the architecture level are categorized and
explained. Based on the metamodel defined in Section 4, Section 5 describes a
domain model for an e-Travel System domain. Related works, and conclusions and
suggestions for future work are given in Sections 6 and 7, respectively.

2 Domain Assets Metamodeling Approach

The classical framework for metamodeling is based on a four-layered architecture [3].
The bottom level, M0, is the information layer, which is comprised of the actual data
objects. The next level, M1, is said to hold a model of the M0 data. Level M2, which
is referred to as a metamodel, holds a model of the information at M1. Finally, level
M3 holds a model of the information at M2, and is called the meta-metamodel. As
Fig. 1 shows, we adopt this basic metamodeling structure, where elements in a given
conceptual layer describe elements in the next layer below.

Application asset
model layer

Domain asset model
layer

Domain asset
metamodel layer

(Domain asset Profile)

Core RAS layer

Application asset
model layer

Domain asset model
layer

Domain asset
metamodel layer

(Domain asset Profile)

Core RAS layer

Fig. 1. Layered domain assets metamodeling

 A Metamodel Approach to Architecture Variability in a Product Line 117

The domain assets metamodeling architecture comprises the following four layers:

1. Core RAS layer: The infrastructure for a metamodeling architecture.
Defines the constructs for specifying our domain architecture
metamodel. This describes a general representation of assets.

2. Domain asset metamodel layer: Provides the modeling constructs of our
domain asset metamodel such as domain requirements metamodel,
domain architecture metamodel, and domain implementation metamodel.
This describes extensions to the fundamental elements of Core RAS.
Therefore, this means Domain Asset Profile.

3. Domain asset model layer: Uses our domain assets metamodel to build
the assets in a domain. Domain assets can be domain requirements,
domain architecture, domain implementation, and other elements through
domain analysis, domain design, and domain implementation processes.
The models in this layer are instances of a metamodel.

4. Application asset model layer: Customizes a domain asset model and
defines a specific application in a domain.

3 Reusable Asset Specifications

A Reusable Asset Specification (RAS) was recently adopted by the Object Manage-
ment Group (OMG) and is now an open standard that can be used to manage any set
of development artifacts. The scope of this specification is a set of guidelines and
recommendations about the structure, content, and descriptions of reusable software
assets [2]. RAS is described in two major categories: Core RAS and Profiles. Core
RAS represents the fundamental elements of asset specification. The Profiles describe
extensions to those fundamental elements. RAS defines three profiles, Default Profile,
Default Component Profile, and Default Web Service Profile. Additionally, we extend
the RAS to consider each domain asset's characteristics and explicitly define its
variability. These definitions are called the Domain Asset Profiles. A domain
architecture metamodel, which is one of the Domain Asset Profiles, is explained in
the next section.

Fig. 2 shows a Core RAS Model. As the figure below indicates, Core RAS defines
four major sections to an asset including the Classification section, Solution section,
Usage section, and Related Assets section.

The classification section lists a set of descriptors for classifying the asset. The
solution section describes the artifacts of the asset. An artifact is a work product that
can be created, stored and manipulated by asset producers, consumers and tools. An
artifact may have a relationship with another artifact. An artifact may have a
variability point that is expected to be altered by the asset consumer, and which
describes where and what in the artifact can be modified. An artifact may be relevant
to a particular artifact context such as a requirement, design, implementation, or test
context. An artifact context helps explain the meaning of the elements in the artifact.
The usage section describes the activities to be performed for applying or using the
asset. Some activities are for the asset in general whereas other activities are for a
specific artifact within the asset, and other activities may be relevant to a particular

118 M. Moon, H.S. Chae, and K. Yeom

artifact context. For each variability point, there must be at least one activity that
describes how to bind that variability point. The Related Assets section describes this
asset’s relationship to other assets.

Fig. 2. The Core Reusable Asset Specification (RAS) Model

4 Metamodel of Domain Architecture

The notion of domain architecture is defined as “a reference model for a set of
applications sharing similar functionality, behavior and structure” [4]. The domain
architecture has two main roles: first, it must describe the commonalities and
variabilities of the products contained in the software product line; and secondly, it
must provide a common overall structure. In this paper, a metamodel of domain
architecture is defined to establish an overall scheme for representing a domain
architecture.

In this section, we present a domain architecture metamodel by extending the
solution model of a Core RAS model in a domain design context. The primary
responsibility of this layer is to define constructs for specifying domain architecture
models in a specific domain. Fig. 3 shows an overview of our domain architecture
metamodel. The Solution has one new element, domain architecture. Base constructs
for representing domain architecture are domain component, domain component
binding, interface, and operation:

 Domain component: a unit of computation or a data store with variation points
that are built in or at least anticipated.

 Domain component binding: architectural building blocks used to model
interactions between domain components.

 Interface: a set of defined operations that are accessible from outside the
domain component and form the signature of the interface. The external behavior
of a domain component is defined by its provided and required interfaces.

 Operation: an individual action that the component instance will perform.

 A Metamodel Approach to Architecture Variability in a Product Line 119

Domain architecture has association with several classes including Model,
Diagram, and Specification. Those may also be used to describe the domain
architecture. A model may have multiple diagrams and specifications. There may be
multiple models such as domain structure models, domain behavior models, and
domain component specifications.

 Domain structure model: includes domain components and relationships

between them (domain component bindings), and describes the static structure
of the product line being modeled.

 Domain behavior model: describes how domain components interact with
each other, or how interfaces will be used.

 Domain component specifications: include not only interface specifications
that are specified by a set of operation specifications, but also constraints on
the way the interfaces are to be implemented.

As Fig. 3 indicates, the context elements have variation as an attribute. The type of

the variation is represented as a CV_property, which is defined as a property that can
be common or optional. In a software product line, adding or changing requirements
can cause a degeneration of the product line architecture. A CV_property is decided
according to the existence of functionality, so it affects the existence of functionality
in an application. Additionally, it affects the existence of the domain component,
domain component binding, interface, and operations in the interface. The variation
in the domain static and behavior models is influenced by the CV_property of
the domain component, interface, or operation. The variation described in the
domain component specification reflects the variations identified in internal domain
components.

Fig. 3. Metamodel of domain architecture

120 M. Moon, H.S. Chae, and K. Yeom

4.1 Variability in Domain Architecture Constructs

The variations of domain architecture are classified as follows:

 Domain Component CV_property – A domain component implements
functionality in a domain. Therefore, a domain component may or not appear
in a domain architecture according to the domain functionality. This is defined
as the property that the domain component can be common or optional.

 Domain Component binding CV_property – The variation of domain
component binding occurs directly or indirectly. Direct variation occurs when
domain relations between two domain components are added or deleted. Indirect
variation occurs when domain components with the optional CV_property
appear or not in the domain architecture. These domain component bindings
depend on the CV_property of the domain components. If the relations between
domain components are directly or indirectly varied, it conforms to the domain
component binding CV_property at the architecture level. This variation type
will be shown in the domain structure model.

 Interface CV_property – A domain component may have one or more
interfaces that can be managed and evolved separately. The variation in an
interface is defined as a property such that interfaces can be common or
optional.

 Operation CV_property – Any function in a domain may be realized as an
operation. Therefore, operations may appear or not in a domain component
according to domain functionality. The variation of operations is defined as a
property that operations can be common or optional.

4.2 Variability in Domain Architecture Model

Domain architecture models are composed of elements in the domain design context.
Therefore, the variation of the domain architecture constructs in a domain causes
domain architecture models to change. The variations of domain architecture model
are classified as follows:

 Domain Configuration Style – The variations of domain configuration style

can be identified in a domain structure model, a connected model of domain
components and domain component bindings. These appear in a domain
structure model according to their CV_properties. That is, the variation of
domain configuration style is defined as an alteration in which domain
components and domain component bindings may or may not appear in a
domain structure model on the basis of their CV_properties.

 Domain Component Interaction – The variations of domain component
interaction can be identified in a domain behavior model. Because the domain
behavior model contains interaction models for each interface and operation,
their CV_property cause interactions between domain components to alter.
That is, the variation in domain component interactions is defined as an
alteration in which an execution flow may or may not appear in a domain
behavior model on the basis of the CV_property of the interface or operation.

 A Metamodel Approach to Architecture Variability in a Product Line 121

 Domain Component Specification – A domain component specification
describes an internal domain component. The information about domain types
and domain object interactions that participate in realization of a domain
component is given in detail. Therefore, a domain type and the operation of the
domain type may have a variation point, and this is explicitly represented by
stereotype <<v.p>>. These can be described using different detailed design
representations like class diagrams and state charts. In this paper, we do not
deal with variability of an internal domain component in detail.

5 Domain Architecture in the e-TS Domain

A domain architecture model is an instance of the domain architecture metamodel
in a specific domain. In this section, we describe in detail the variations of domain
architecture by illustrating a case study with e-Travel Systems (e-TS). An e-TS can
be characterized as a family of B2C travel business applications that provide
facilities such as e-travel catalogs, online reservations, secure e-payment systems,
e-travel portal site services, and e-travel network/chain management on the Internet.
e-TSs have commonality in many e-travel services such as accommodation, tour,
car rental, travel activities, etc. Fig. 4 shows a partial Primitive Requirement (PR)
[5] matrix of an e-TS domain, where the identified PRs are listed in the first column
and the names of the e-TS systems are listed in the header row. The determination
of whether a PR can be reused is based on its frequency of appearance in the PR
matrix (i.e., the commonality ratio of the PR). The variation of domain architecture
reflects properties such as commonality and variability that were identified from the
requirements analysis step. Even though a single domain component may
implement only one PR, mostly several related PRs are encapsulated as a domain
component.

Fig. 4. A PR matrix

122 M. Moon, H.S. Chae, and K. Yeom

5.1 Variability in e-TS Domain Architecture Constructs

 Domain Component CV_property – Fig. 5 shows some of the domain
components that are extracted in the e-TS domain. The Customized Reservation
Mgr domain component that contains PR12, PR13, and PR14 has a variation point,
explicitly represented by stereotype <<v.p>>, which indicates it may optionally
appear in an application.

Fig. 5. Domain components in e-TS domain

 Interface CV_property – The Customer Info Mgr domain component provides
functions for managing information about customers. Customer information
about e-money, gift certificates, or coupons is necessary only when an
application can support payment services such as payment by coupon or by
e-money. Therefore, as Fig. 6 shows, an interface ICustomer Supplement Info
in the Customer Info Mgr domain component has a variation point that
indicates it may be optionally realized in an application component. The
variation point is explicitly denoted by stereotype <<v.p>> on the interface
name.

Fig. 6. Interfaces of Customer Info Mgr domain component

 Operation CV_property – The Package Reservation Mgr domain component
provides functions for reservation, review, modification, and cancellation of
vacation packages. As Fig. 7 indicates, the interface IPackage Reservation that
the domain component provides has a variable operation select_Package_option
for supporting a list of options for a vacation package. It is explicitly denoted by
stereotype <<v.p>> because it can be optionally implemented in an application
component.

 A Metamodel Approach to Architecture Variability in a Product Line 123

Fig. 7. Operations in IPackage Reservation Interface

5.2 Variability in e-TS Domain Architecture Model

 Domain Configuration Style – Fig. 8 and Fig. 9 show a partial domain
structure model of the e-TS domain. When the domain structure model applies
to an application system, it needs to be customized based on the variation
points of the domain components and domain component bindings, so the
configuration style will be changed. In Fig. 8, the Car Reservation Mgr
domain component, the domain component binding connected with the ICar
Reservation interface, and the ICar Search interface provided by the Search
Engine Mgr domain component are explicitly denoted by stereotype <<v.p>>
in the domain structure model. These are related to Car Reservation
requirements. If an application system does not provide the functions of Car
Reservation, these will be omitted from that model. This can be determined on
the basis of a PR matrix, according to a property of the PR that can be common
or optional.

Fig. 8. Domain structure model related to Search Engine Mgr

124 M. Moon, H.S. Chae, and K. Yeom

 In Fig. 9, the Payment Mgr domain component and the domain component
binding connected with the IPayment Mgt interface are explicitly denoted by
stereotype <<v.p>> in a domain structure model. For example, a customer may
pay a membership fee when he/she wishes to register to access some services.
This function is one of several variations that the Register PR (PR3 in Fig. 4)
includes. Thus, this can be determined on the basis of a PR specification, the
detailed description for each PR.

Fig. 9. Domain structure model related to Customer Mgr

 Domain Component Interaction – Fig. 10 shows the interactions between
component instances for Package Reservation. As Fig. 7 indicates, an
operation select_Package_option of the IPackage Reservation interface is
variable one. Accordingly, the execution flows for the operation have variation
points, which are explicitly denoted as condition [v.p]. Fig. 11 shows other
interactions between component instances for Package Reservation. In Fig. 10,
IPackage Reservation calls operations of IReservation List and ICustomer
Reservation Info regardless of their message sequence. On the other hand, in
Fig. 11, IPackage Reservation calls an operation of IReservation List, and then
IReservation List calls an operation of Reservation Info in sequence.

Fig. 10. Interactions 1 for Package Reservation

 A Metamodel Approach to Architecture Variability in a Product Line 125

Fig. 11. Interactions 2 for Package Reservation

6 Related Works

Referring especially to domain architecture, an important task is to analyze the
domain and to identify the commonalities and variabilities of components and
operations of the domain. The FORM (Feature-Oriented Reuse Method) [6] was
developed as an extension of the FODA (Feature-Oriented Domain Analysis) method
[7]. The main characteristic of FORM is its four-layer decomposition, which
describes different points of view on product development. However, this does not
address explicitly the variations in the reference architecture, and entails complexity
when many variants must be represented. In [8], variation is represented using
patterns associated with discriminants. A discriminant has three types: single,
multiple, and optional, and is closely related to the division of feature properties into
mandatory, optional, and alternative. It does, however, not emphasize characteristics
of variation at the design level. While requirements models are concerned with
features and capabilities of the domain, design models focus on components,
interfaces, and operations. Gomma explained the product line design phase in
connection with features [9]. He strived to describe of design models with explicit
variations in structural and dynamic views. However, all alternative variants appear in
those models, so they are complex even in the simple case study. Because model
elements that have common or optional properties may be modified when applied,
variants should be managed separately at the detailed level. In our paper, the domain
components, interfaces, and operations that have common or optional properties
describe their variants in the domain component specification, i.e., at the detailed
level.

7 Conclusions and Future Work

Domain architecture can play important role in managing the complexity of softwares
and reducing cost of developing and maintaining them. However, well-designed
domain architectures do often fail not because they are not effectively developed but
because they are not properly described with regard to variability. To tackle the
problems with variability of domain architecture, this paper has proposed a
metamodeling approach to developing domain architectures in a product line. We
adopt a layered metamodeling structure to establish an overall representation scheme

126 M. Moon, H.S. Chae, and K. Yeom

of domain architecture. Based on the RAS model, the models of each layer are more
specifically described in the below layer. We first classified the types of variation
points that could be identified at the architecture level and then suggested a modeling
approach to explicitly representing those variabilities in the domain architecture
model.

Our future research activities include configuration management in a product line
and development of a more concrete architecture for a specific domain. In the
software product line context, adding or changing requirements can cause a
degeneration of the domain architecture and components. In addition, because the
impact of the changes in a product line can involve all the applications that are
developed based on the product line, there should be more emphasis on configuration
management than the conventional software. We also plan to build a more detailed
metamodel of domain architecture for a specific domain, for example, automotive
industry. This domain architecture for a specific domain can considerably contribute
to developing and maintaining application by providing the more functionalities
common to them and supporting their variabilities.

References

[1] D. Muthig and C. Atkinson, “Model-Driven Product Line Architecture,” Proc. Second
Software Product Line Conference, Aug. 2002.

[2] The Object Management Group (OMG), Reusable Asset Specification (RAS) Version2.2,
http://www.omg.org/technology/documents/formal/ras.htm, Nov. 2005.

[3] The Object Management Group (OMG), Meta-Object Facility (MOF) Version 1.4,
http://www.omg.org/docs/formal/02-04-03.pdf, 2003.

[4] D.J. Duffy, Domain Architectures: Models and Architectures for UML Applications,
Wiley, 2004.

[5] M. Moon, K. Yeom, and H.S. Chae, “An Approach to Developing Domain Requirements
as a Core Asset Based on Commonality and Variability in a Product Line,” IEEE
Transactions on Software Engineering, vol. 31, no. 7, pp.551-569, Jul. 2005.

[6] K.C. Kang, S. Kim, J. Lee, and K. Kim, “FORM: A Feature-Oriented Reuse Method with
Domain Specific Reference Architectures,” Annals of Software Engineering, vol. 5,
pp.143-168, 1998.

[7] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature-Oriented Domain
Analysis (FODA) Feasibility Study,” Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, Nov. 1990.

[8] B. Keepence and M. Mannion, “Using patterns to model variability in product families,”
IEEE Software, vol. 16, no. 4, pp.102-108, 1999.

[9] H. Gomma, Designing Software Product Lines with UML, From Use Cases to Pattern-
Based Software Architectures, Addison-Wesley, 2004.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 127 – 141, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Approach to Managing Feature Dependencies for
Product Releasing in Software Product Lines*

Yuqin Lee, Chuanyao Yang, Chongxiang Zhu, and Wenyun Zhao

Computer Science and Technology Department, Fudan University,Shanghai 200433, China
li_yuqin@yahoo.com.cn, Yangcy9216@163.com,

{cxzhu, wyzhao}@fudan.edu.cn

Abstract. Product line software engineering is a systematic approach to realize
large scale software reuse. Software product lines deal with reusable assets
across a domain by exploring requirements commonality and variability. Re-
quirements dependencies have very strong influence on all development phases
of member products in a product line. There are many feature oriented ap-
proaches on requirement dependencies. However, most of them are limited to
the problem domain. Among those few focusing on the solution domain, they
are limited to modeling requirement dependencies. This paper presents a feature
oriented approach to managing domain requirements dependencies. Not only is
a requirement dependencies model presented, but a directed graph-based ap-
proach is also developed to analyze domain requirement dependencies for ef-
fective release of member products in a product line. This approach returns a
simple directed graph, and uses an effective algorithm to get a set of require-
ments to be released in a member product. A case study for spot and futures
transaction domain is described to illustrate the approach.

1 Introduction

One of the approaches to successfully realizing large scale software reuse is product
line engineering. Its goal is to support the systematic development of a set of similar
software systems by understanding and controlling their common and particular char-
acteristics [1]. Analyzing requirements commonality and managing variability is an
important activity for domain engineering (DE) and software product line engineering
(SPLE). Managing requirements for a software product line(SPL) is a lot more com-
plex and difficult than that for an individual application. Domain requirements com-
monality and variability are developed into reusable assets of a SPL. Obtaining a
proper set of reusable requirements is the key to achieve successful DE activities, for
these requirements are not only the inputs of subsequent steps in DE, but also help
form requirement models for application engineering (AE) [2]. Many researchers

* Supported by the National Natural Science Foundation of China under Grant No. 60473061;

the National High Technology Development 863 Program of China under Grant
No.2005AA113120.

128 Y. Lee et al.

have recognized that individual requirements are seldom independent of each other,
and various kinds of dependencies exist among them [3, 4, 5, 6, 7, 8, 9].

Dependencies are essential elements among the requirements of a real software
system, because of the cohesion of a system. The cohesion is a basic quality that is
necessary for a system to be a system, and to achieve certain customer-desired goals
[10]. A SPL deals with a set of member products, so dependencies exist among re-
quirements of SPL. Otherwise the requirements would be unrelated and it would be
unnecessary to use SPL to develop them. Dependencies among the requirements of a
domain have not only positive but also negative effects. Positive dependencies are
useful to achieve a requirements set for a member product from SPL, and guide the
release planning for a software system. Negative dependencies will lead to require-
ment conflicts and inconsistencies. These conflicts and inconsistencies have to be
managed during analysis phase and along with system evolution.

A feature is a set of tight-related requirements from the stakeholders’ viewpoint.
Features are not independent in a system. Feature dependencies reflect requirement
dependencies. There are many feature oriented approaches on managing requirement
dependencies. However, most of them are limited to the problem domain. Approaches
focusing on the problem domain emphasize static relations among features. Dynamic
relations and behavior characteristics of requirements are difficult to represent.
Among those few focusing on the solution domain, they are limited to modeling re-
quirement dependencies. Few of them deal with managing feature dependencies and
getting requirement sets for a member product from a SPL.

Feature dependencies have to be represented in domain models. A feature depend-
encies model influences how effective to configure member products in a SPL. Tree
structure can not represent feature dependencies, because not all feature relations are
hierarchical. Representing the nonhierarchical dependencies relationships into a tree
structure has left the current feature modeling methods with the possibility of either
omitting dependencies or losing control over the feature model [11]. Feature depend-
encies relationships are a graph intuitively. The graph can be processed using a matrix
or an adjoining table. It’s the groundwork in achieving the concise graph representing
feature dependencies.

The proposed method not only defines a classification of feature dependencies and
presents a feature dependencies model, but also uses a directed graph to analyze do-
main requirement dependencies for effective release of member products in SPL. This
approach returns a simple directed graph that includes only direct feature dependen-
cies, and uses an effective algorithm to get the set of requirements which are to be
released in a member product.

The paper is organized as follows: Section 2 discusses related work on feature
dependencies. Section 3 defines a classification of feature dependencies in a SPL.
Section 4 presents a feature dependencies model based on directed-graph, and pro-
vides an algorithm that generates the maximum connective dependencies graphs. It
can be easily used to get the features set for a member product from a SPL, and detect
conflicting dependencies. Section 5 illustrates and analyses our approach by an exam-
ple of spot and futures transaction domain. Section 6 draws a conclusion and some
suggestions for future work.

 An Approach to Managing Feature Dependencies 129

2 Related Work

Some different approaches exist on how to deal with feature dependencies. Most of
them focus on feature dependencies modeling, and some of them deal with analysis or
management of feature dependencies. The following are some approaches that deal
with software release planning.

Claes Wohlin and Aybüke Aurum [20] presented an empirical study of the decision
criteria when selecting a set of requirements to implement in a forthcoming project,
and hence to postpone the implementation of other requirements to a later point in
time.

Omolade Saliu and Guenther Ruhe [21] described ten key technical and non tech-
nical aspects impacting release planning, and evaluated seven existing release plan-
ning methods. They proposed a new release planning framework that considers the
effect of existing system characteristics on release planning decisions.

Par Carlshamre and Bjorn Regnel1 [22] compared two independently developed
industrial market-driven requirements engineering processes, which both apply
continuous requirements management using state-oriented life cycle models in the
fostering of requirements from invention to release.

Hassan Gomaa, Michael E. Shin [12] proposed a multiple-view meta-model for
SPLs to describe how each view relates semantically to other views. The meta-model
depicts life cycle phases, views within each phase, and meta-classes within each view.
The relationship between the meta-classes in the different views was described. Con-
sistency checking rules were defined based on the relationships among the meta-
classes in the meta-model. The approach dealt with feature dependencies but did not
go deep into it.

K. Lee and K. C. Kang [13] extended the feature modeling into analyzing feature
dependencies that are useful in the design of reusable and adaptable product line com-
ponents, and presented design guidelines based on the extended model. Although the
structural relationships and configuration dependencies are essential inputs for prod-
uct line asset development, they are not sufficient for development of reusable and
adaptable product line assets. They gave out six types of feature dependencies which
have significant influences on the design of product line assets. They emphasized on
solutions to hide variable features from the client features which use them.

H. Ye and H. Liu [15] presented a matrix-based approach to model feature depend-
encies in a scalable way. Three hierarchical relationships and three non- hierarchical
relationships were identified, but the dependencies in each class were not representative.

W. Zhang, H. Mei et al [10] identified static, dynamic feature dependencies. They
also identified feature dependencies on the specification level. They emphasized fea-
ture dependencies modeling and interaction among different dependencies types.
Dependencies on specification level are not sharing the same classification condition
with the two other types of dependencies.

We define a classification of feature dependencies in a static and dynamic way, and
propose a feature dependencies model. The directed graph is used to analyze domain
requirements dependencies for effective configuration of member products in a prod-
uct line. This approach returns a simpler directed graph, and uses an effective algo-
rithm to generate the maximum of connective dependencies graphs. It can be used to
get a set of requirements for a member product more easily. The characteristics make

130 Y. Lee et al.

the approach more precise, easily understood and very effective for producing re-
quirement set of a member product from a SPL.

3 Feature Dependencies

3.1 Feature Variability

Features in a SPL can be classified into two types: mandatory and variable features.
Mandatory features are those which must be present in all member products in a

SPL.
Variable features are those that may not be present in all member products in a

SPL.

3.2 Feature Dependencies

The dependencies among features can be classified into static and dynamic ones.
Static feature dependencies show the intrinsic relations existing among features, such
as whole-part relations and static constraints etc. Dynamic feature dependencies show
the operational relations among features, such as sequential relation illustrates fea-
tures that have to be active one after another. Each kind of dependencies will be dis-
cussed in detail. We use contiguous lines to represent static dependencies and broken
lines for dynamic dependencies in the following figures.

3.2.1 Static Dependencies
The static dependencies reflect hierarchical feature relations and static constraints
among features on the same level. They include decomposition, generalization, and
static constraints. Static constraints include required and excluded. Decomposition
and generalization reflects dependencies between parent and child features. Static
constraints reflect dependencies between peer features, especially different variants in
one variable point.
Decomposition: When a parent feature is decomposed into a number of children fea-
tures, the relation between parent feature and child feature is called decomposition
dependency. For instance, in spot and futures transaction product lines, a feature trade
is decomposed into two features called order and match. The dependency between
trade and order or match is decomposition. The figure 1 describes the decomposition
dependency. We use rectangles to annotate feature, and diamonds to annotate decom-
position dependency.

Fig. 1. Decomposition dependency example

 An Approach to Managing Feature Dependencies 131

Generalization: When a parent feature is generalized from a number of children fea-
tures, the relation between parent feature and child feature is called generalization
dependency. For instance, Match deal feature is generalized from forward, bidding,
and auction etc.

We use triangles to annotate generalization dependency. The generalization de-
pendency is illustrated in figure 2.

Fig. 2. Generalization dependency example

Static Constraints: If one feature is required or excluded by another feature to consti-
tute a member product, the relation between the two features is called required or
excluded. Required dependency is unidirectional. Excluded dependency is bidirec-
tional. For instance, Cancel order feature requires Order feature, so Order feature is
required by Cancel order feature. Local market feature can not coexist with Global
market feature, so Local market feature is excluded by the Global market feature;
meanwhile Global market is excluded by Local market. The static constraint depend-
encies are illustrated in figure 3.

Fig. 3. Static constraints dependency example

3.2.2 Dynamic Dependencies
In addition to static dependencies, there are several relations reflecting dynamic
dependencies between features. Dynamic dependencies are described as following.

Serial: If two features should be active immediately one after another, the relation of
the two features is called serial dependency. Serial dependency may represent pre-
condition and post condition relations. The feature being active first is called precon-
dition feature, the other is called post condition feature. For instance, Match deal and
Create order form are serial features. Match deal should be active immediately after
Create order form, so Create order form feature is the precondition of Match deal
feature. Serial dependency can represent control flow and data flow operations. The
serial dependency is illustrated in figure 4.

Fig. 4. Serial dependency example

132 Y. Lee et al.

`Collateral: If two or more features should be active at the same time, the relation
between these features is called collateral dependency. Collateral dependency is bidi-
rectional. For instance, Order and Match should be active when the trading system is
operating. Order feature will deal with order request related operations. Match feature
will deal with matching order requests. The system is a real time transaction product,
so the two features should be active at the same time during trading period. The col-
lateral dependency is illustrated in figure 5.

Fig. 5. Collateral dependency example

Synergetic: If two or more features should be synchronized sometime during their
active period, the relation between them is called synergetic dependency. Synergetic
dependency represents serial relation existing in concurrent operations. Synergetic
dependency is bidirectional. For instance, in spot and futures transaction product line,
feature Order and feature Match have to be active parallel, but Match has to wait to
cooperate with Order by order queue. Synergetic dependency describes two or more
features working concurrently to fulfill a task. The synergetic dependency is illus-
trated in figure 6.

Fig. 6. Synergetic dependency example

Change: If one feature can be changed by another feature, the relation between these
two features is called change dependency. The feature changing other features is
called changer, and the feature being changed by others is called changee.

Change dependency can be classified into the following kinds: state change, behav-
ior change, data change, and code change.

State change dependency represents the relation that one feature can change an-
other feature’s state when they are active. For instance, a feature is changed from
unbound to bound when it is needed by other features. In spot and futures transaction
product line, Start match market feature will need Match trading feature to be bound
to process the corresponding transactions, so Start match market feature has a state
change dependency with Match trading feature. Likewise, close match market feature
will change Match trading feature’s state from bound to unbound, so Close match
market feature has a state change dependency with Match trading feature. The state
change dependencies are illustrated in figure 7-1.

 An Approach to Managing Feature Dependencies 133

Fig. 7-1. State change dependency example

Behavior change dependency represents the relation that one feature may change
another feature’s behavior when they are active. For instance, when orders can’t be
matched, Match deal feature will be idle. When a client enters a new order, the new
order will be added into the order queue, and Match deal feature will change from idle
to run. So Create order form feature has a behavior change dependency with Match
deal feature. The behavior change dependency is illustrated in figure 7-2.

Fig. 7-2. Behavior change dependency example

Data change dependency represents the relation that one feature may change data
when being used by another feature. For instance, one order may be matched partly
when there is not enough suitable reversed order, e.g. partial match. So the matched
and unmatched amount of the order is changed by Match deal. The matched and un-
matched amount is not zero but less than the order amount. The Match deal feature
has a data change dependency with order feature. The data change dependency is
illustrated in figure 7-3.

Fig. 7-3. Data change dependency example

Code change dependency represents a relation where one feature may change an-
other feature’s code. For instance, in the security model, Anti-trace feature will
change Security protect feature’s code. The code change dependency is illustrated in
figure 7-4.

Fig. 7-4. Code change dependency example

134 Y. Lee et al.

4 Managing Feature Dependencies

Feature dependencies will influence how to get features set of a member product in a
SPL, and how to release products in an incremental way. So how to represent feature
dependencies in an understandable way is a challenge. We use directed graphs to
represent feature dependencies, and assign an eigenvalue to each type of dependen-
cies. In directed graph, eigenvalue of every directed path represents combined de-
pendencies from one feature to the other.

4.1 Feature Dependencies Model

Among features in a SPL, usually majority dependencies exist among minority fea-
tures. In order to decrease workload of feature dependencies analysis, we first set
apart those features which have no dependencies with other features. These features
are called isolated features. Then we analyze dependencies pair by pair.

Every type of dependency is assigned an eigenvalue. We use a byte to denote de-
pendencies. Each bit of the byte represents a type of dependency. This method is used
to represent combined dependencies easily and directly. If two features have more
than one dependency, the eigenvalue of all dependencies between them is assigned a
combined value with a corresponding bit representing a dependency. The eigenvalues
of all dependencies are assigned in table 1.

Table 1. Eigenvalue of dependencies

 Type of dependency Assigned eigenvalue(binary)
decomposition 01000000 (0x 40)
generalization 00100000 (0x 20)
required 00010000 (0x 10)
excluded 10000000 (0x 80)
serial 00001000 (0x 08)
collateral 00000100 (0x 04)
synergetic 00000010 (0x 02)
change 00000001 (0x 01)

Table 2. Feature dependencies table

 Feature(source) Dependency Feature(destination)
Feature1 decomposition (0x40) Feature7
Feature2 Synergetic(0x02) Feature1
Feature1 Synergetic(0x02) Feature2
Feature3 required (0x10) Feature4
Feature3 serial (0x08) Feature4
Feature3 change (0x01) Feature5
Feature5 Collateral(0x04) Feature2
Feature2 Collateral(0x04) Feature5
Feature6 excluded (0x80) Feature1
Feature1 excluded (0x80) Feature6

 An Approach to Managing Feature Dependencies 135

DependencyForestGenerator(T: in dependency table, F: out dependency forest)
F.TreeNo=0;
FeatureSet ; //feature set consists of all features;
While T not tableEnd
{
ReadOneRowFromTable(T, R);//T is the dependency table, R is the gotten row;
If R.sourceFeature exists in the dependency forest, and is the root of tree K
 Then If R.sourceFeature has a path to R.destinationFeature
 Then eigenvalue of the path = + R.dependency
Else create a directed path from R.sourceFeature to R.destinationFeature with ei-

genvalue R.dependency in tree K;
 Else {
Create tree F.TreeNo++;
F.TreeNo.root= R.sourceFeature;
FeatureSet=FeatureSet – F.TreeNo.root;
}
}
While FeatureSet not empty //generate trees with only roots to represent isolated

features
{
 F.TreeNo ++;
 F.TreeNo.root= get a feature from FeatureSet;
FeatureSet=FeatureSet - F.TreeNo.root;
}
//end of algorithm DependencyForestGenerator.

Fig. 8. Algorithm for generating feature dependency forest

Fig. 9. Example of feature dependency forest generated

Rectangles are used to represent mandatory features, and ellipses are used to repre-
sent variable features. Directed path represents direct dependency from one feature to
another feature. Eigenvalue of each path represents combined dependencies eigenval-
ues from one feature to another feature.

136 Y. Lee et al.

MaximalConnectiveDependencyGraphGenerator(F: in dependency forest, G: out
graph)

 //generate maximum connective feature dependency graphs;
initial G is null;
initial F[i]=0, i=0..n, n is the number of features.
//F[i]=0 representing tree i has not be processed, the value will be 1 after processed;

Repeat
{
If a mandatory feature which is the root of one feature tree in the forest F exists, and

F[i]=0
Then G.node =i ; //i is the mandatory feature number in feature set.
Else If a variable feature j which is the root of one feature tree in the forest F exists, and

F[j]=0

 Then G.node =j ; //j is the variable feature number in feature set.
Else G.node = null;

While G.node not null and F[G.node]=0
{
Take feature tree G.node;
If G.node tree has a child Then NextNode = G.node.child;
 While NextNode not null
 {
 If NextNode is in G
Then
 Add NextNode to G;
Add a path from G.node to NextNode;
eigenvalue of the path= eigenvalue from G.node to NextNode in tree G.node;

If F[NextNode]=0 then insert NextNode to queue WaitingProcessedTrees;
If tree G.node has another child unprocessed
Then
NextNode = next child of tree G.node
Else NextNode = null;
 } // tree G.node has been processed;
 F[G.node]=1; //tree G.node has been processed;
 If queue WaitingProcessedTrees is not empty Then G.node = the first node pop

out of the queue;
 Else G.node = null;
}
// get one maximum connective dependency graph; the graph is directed, and two fea-

tures may have
// bidirectional paths.

} until G.node is null;
// end of repeat; all maximum connective graphs returned.
// end of algorithm MaximalConnectiveDependencyGraphGenerator.

Fig. 10. Algorithm for generating maximum connective directed graphs

 An Approach to Managing Feature Dependencies 137

After analyzing dependencies between features in DE, we get a feature dependen-
cies table. Each row in the dependency table represents a direct dependency between
two features. The represented dependency is has a direction. Bidirectional depend-
ency is represented by two rows; each feature of the dependency is the source feature
in one row. In our classification, collateral, synergetic and excluded dependencies are
bidirectional. A simple example is described in the following table 2. The example
has seven features. Feature 3 is mandatory, and the other features are variable.

Based on feature dependency table, we design an algorithm DependencyForest-
Generator to generate feature dependency forest. The feature dependency forest con-
sists of n trees, where n is the number of features. Every feature is the root of one tree.
The trees are called feature dependency trees. Only direct dependencies are presented
in feature dependency trees, no implicit dependencies are presented in feature de-
pendency trees. If there is more than one dependency between two features, all the
dependencies are presented in one path by combined eigenvalue.

The algorithm DependencyForestGenerator is described in figure 8.
Using algorithm DependencyForestGenerator, the feature dependency forest in

figure 9 below is generated.
The feature dependency forest describes feature dependencies clearly. Each feature

dependency tree represent dependencies related with one feature. This approach is
simpler and more straightforward than matrix-based and table-based methods. Only
direct dependencies are represented on trees. Implied dependencies can be gained by
transitional relations reasoning.

4.2 Managing Feature Dependencies

The feature dependency forest discussed above is a representation of direct dependen-
cies. The forest only describes direct dependencies, but implied dependencies are not
represented. When we want to get a feature set for releasing a member product, im-
plied dependencies have to be used. Based on feature dependency forest, an algorithm
generating maximal connective graphs is developed in the following figure 10. Im-
plied dependencies can easily be gained from connective graphs.

Using algorithm MaximalConnectiveDependencyGraphGenerator, maximum con-
nective feature dependency graphs of forest in figure 9 are generated in figure 11.

Fig. 11. Maximum connective dependency graphs generated from example above

138 Y. Lee et al.

Fig. 12. Feature dependency graph generated for spot and futures transaction

 An Approach to Managing Feature Dependencies 139

The maximum connective dependency graphs are very effective for generating a
features set for product release in SPL. Starting from a feature included in a product
release, the features achieved by spreading maximum connective dependency graphs
will constitute the member product. Only the graph consisting of the start feature need
to spread, other maximal connective graphs can’t be used. Until all required features
are included in a set, generating process ends. From a few mandatory features, we can
easily produce a features set of the product.

5 Case Study

We take the spot and futures transaction product line as an example. After analysis of
domain requirements, we get a feature model and feature dependency model. The
feature dependency model is the one we’re concerned with here. In large SPL, there
are a plenty hood of features, so the dependency forest will consist of many trees. A
feature model can be included in a feature dependency model. We only describe the
feature dependency graph generated in the following figure 12.

In figure 12, rectangles are used to represent mandatory features, and ellipses are
used to represent variable features. Static dependencies are annotated by real lines,
and dynamic dependencies are annotated by dashed lines. Every path is described by
a dependency name and eigenvalue. From the dependencies graph, the relations of
features are very concise and clear. For example, trade feature is mandatory in the
product line, but settlement, delivery, and quotation are variable. If settlement is
needed in a product release, its children features are needed. If settlement is included
in a product release, trade feature is included implicitly. Similarly, delivery or quota-
tion feature included in a product release implies that trade feature is included too. All
kinds of feature dependencies are included in the figure, so children features of deliv-
ery feature are hidden to simplify the graph.

6 Conclusion and Future Work

Product line software engineering is a systematic approach to realize large scale soft-
ware reuse. SPLs deal with reusable assets across a domain by exploring domain
requirements commonality and variability. Domain requirements dependencies have
very strong influence on all development phases of member products in a product
line. Feature dependencies reflect domain requirement dependencies. How to manage
feature dependencies will influence how to release products effectively.

A new feature oriented approach has been developed to model feature dependen-
cies. Feature dependencies are classified as static and dynamic dependencies. Static
dependencies reflect hierarchical feature relations and static constraints among fea-
tures in the same level. They include decomposition, generalization, and static con-
straints. Dynamic feature dependency shows the operational relations among features.
They include serial, collateral, synergetic, and change dependencies. Each kind of
dependency is given a notation.

Each type of dependency is assigned an eigenvalue. The feature dependencies are
analyzed in a dependency table, representing direct dependencies among features. The

140 Y. Lee et al.

dependency table is transferred to a feature dependency forest. The forest is concise
and easily understood. Each feature has a dependency tree whose root is the feature.

Based on feature dependency forest, maximal connective feature dependency
graphs are achieved by an effective algorithm. The graphs may include more than one
graph when the features have non connected parts. The graphs are useful for releasing
products incrementally.

This approach is more effective than other approaches and provides a reasonable
dependency classifying method. A feature dependency forest is used to annotate
whole domain feature dependencies. Each feature has a tree to represent dependencies
related within it. Based on the forest, maximum connective graphs are generated to
represent united dependencies in the SPL. It is used to decide which features need to
be included in a release.

Based on the feature dependencies model, we will research how different feature
dependencies influence architecture design in a SPL, and how to detect and handle
conflicts within dependencies.

References

1. Mikyeong Moon, Keunhyuk Yeom, “An Approach to Developing Domain Requirements
as a Core Asset Based on Commonality and Variability Analysis in a Product Line”, IEEE
transactions on software engineering, vol. 31, no. 7, July 2005, pp551-569.

2. Hong Mei, Wei Zhang, Fang Gu, “A feature oriented approach to modeling and reusing
requirements of SPLs”, Proceedings of the 27th Annual International Computer Software
and Applications Conference (COMPSAC’03),2003.

3. P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. Natt och Dag, “An Industrial
Survey of Requirements Interdependencies in Software Product Release Planning”, In Pro-
ceedings of Fifth IEEE International Symposium on Requirements Engineering, IEEE
Computer Society, 2001, pp. 84-91.

4. A.G. Dahlstedt, A. Persson, “Requirements Interdependencies–Moulding the State of Re-
search into a Research Agenda”, In Proceedings of Ninth International Workshop on Re-
quirements Engineering: Foundation for Software Quality, Klagenfurt/Velden, Austria,
June 2003, pp. 55-64.

5. S. Ferber, J. Haag, J. Savolainen, “Feature Interaction and Dependencies: Modeling Fea-
tures for Reengineering a Legacy Product Line”, The Second Software Product Line Con-
ference 2002, LNCS 2379, August 2002, pp. 235–256.

6. J. Giesen, A. Volker, “Requirements Interdependencies and Stakeholders Preferences”, In
Proceedings of IEEE Joint International Conference on Requirements Engineering, Sep
2002, pp. 206-209.

7. J. Karlsson, S. Olsson, and K. Ryan, “Improved Practical Support for Large-scale Require-
ments Prioritizing”, Requirements Engineering Journal, Vol. 2, No. 1, 1997, pp. 51-60.

8. K. Lee, K.C. Kang, “Feature Dependency Analysis for Product Line Component Design”,
The Third Software Product Line Conference 2004, LNCS 3107, Aug 2004, pp. 69–256.

9. B. Ramesh, M. Jarke, “Toward Reference Models for Requirements Traceability”, IEEE
Transactions on Software Engineering, Vol. 27, No. 1, January 2001, pp. 58-93.

10. Wei Zhang, Hong Mei, Haiyan Zhao, ”A Feature-Oriented Approach to Modeling Re-
quirements Dependencies”, Proceedings of the 2005 13th IEEE International Conference
on Requirements Engineering (RE’05),2005.

 An Approach to Managing Feature Dependencies 141

11. Hein, A., Schlick, M., and Vinga-Martins, R.: ‘Applying feature model in industry setting’
‘SPLs – experience and research directions’ (Kluwer Academic Publishers, Boston, 2000),
pp. 47–70

12. Hassan Gomaa, Michael E. Shin, “A multiple-View Meta-modeling Approach for Vari-
ability Management in SPLs”, ICSR 2004, LNCS 3107, pp274-185, 2004

13. Kwanwoo Lee, Kyo C. Kang, “Feature Dependency Analysis for Product Line Component
Design”, ICSR 2004, LNCS 3107, pp69-85, 2004

14. M. Sinnema, S. Deelstra, J. Nijhuis, J. Bosch, “Managing Variability in Software Product
Families”

15. H. Ye and H. Liu, “Approach to modeling feature variability and dependencies in SPLs”,
IEE Proc.-Softw., Vol. 152, No. 3, June 2005, pp101-109.

16. P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. Natt och Dag, “An Industrial
Survey of Requirements Interdependencies in Software Product Release Planning”, In Pro-
ceedings of Fifth IEEE International Symposium on Requirements Engineering, IEEE
Computer Society, 2001, pp. 84-91.

17. J. Giesen, A. Volker, “Requirements Interdependencies and Stakeholders Preferences”, In
Proceedings of IEEE Joint International Conference on Requirements Engineering, Sep
2002, pp. 206-209.

18. von Knethen, B. Paech, F. Kiedaisch, and F. Houdek, “Systematic Requirements Recy-
cling through Abstraction and Traceability”, In Proceedings of IEEE Joint International
Conference on Requirements Engineering, Sep 2002, pp. 273-281.

19. Martin S. Feather, Steven L. Cornford, Mark Gibbel, “Scalable mechanisms for require-
ments interaction management”, 2000, IEEE.

20. Claes Wohlin, Aybüke Aurum,” What is important when deciding to include a software
requirement in a project or release”, 2005 IEEE,p246-255

21. Omolade Saliu, Guenther Ruhe, “Supporting Software Release Planning Decisions for
Evolving Systems”, Proceedings of the 2005 29th Annual IEEE/NASA Software Engi-
neering Workshop (SEW’05)

22. Par Carlshamre, Bjorn Regnell, “Requirements lifecycle management and release planning
in market-driven requirements engineering processes”, 2000 IEEE, p961-965

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 142 – 155, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Adaptation and Composition Within Component
Architecture Specification

Luciana Spagnoli1, Isabella Almeida2, Karin Becker1, Ana Paula Blois1,2,
and Cláudia Werner2

1 Catholic University of Rio Grande do Sul
Av. Ipiranga, 6681 – Prédio 30 – Bloco 4 – ZIP 90619-900 - Porto Alegre – RS- Brazil

2 Federal University of Rio de Janeiro
COPPE/UFRJ – System Engineering and Computer Science Program

P.O. Box 68511 – ZIP 21945-970 – Rio de Janeiro – RJ – Brazil
{lspagnoli, anapaula, kbecker}@inf.pucrs.br,

{isabella, anablois, werner}@cos.ufrj.br

Abstract. Component-Based Development (CBD) and Domain Engineering
(DE) are important approaches for software reuse. In a DE process, components
are specified in a high abstraction level, within a component architecture speci-
fication. When components are reused during an Application Engineering (AE),
they are composed with each other and third-party components. However, con-
flicts usually occur and they must be considered as early as possible, otherwise
they may jeopardize the defined architecture. This work proposes a set of func-
tionalities for development with components, with focus on the support for the
adaptation and composition functionalities. These were included in Odyssey, an
environment that supports DE and AE processes. A preliminary study on the
use of these functionalities is also reported.

1 Introduction

Component-Based Development (CBD) has become a major approach for reuse in
software development. It focuses on the construction of new applications by the inte-
gration of components. It is expected that CBD results in better software quality and
faster development, thus leading to a shorter time-to-market.

In a Domain Engineering (DE) process, components are specified in a high
abstraction level, within a component architecture specification. Application Engi-
neering (AE) deals with the reuse and integration of components to build a new appli-
cation. Despite the potential benefits of component reuse, in practice component
implementation technologies have received far more attention than component reuse
itself. While there is a major concern with the development of components, support is
still lacking for the development with components.

Developing with components involves the activities of component selection, adap-
tation, composition and update [1]. Component adaptation and composition are core
activities in CBD. Adaptation involves structural and/or behavioral component modi-
fications; composition means integrating components via some form of common
infrastructure. These two activities are closely related since many adaptations are
necessary to solve problems that appear within the composition activity.

 Adaptation and Composition Within Component Architecture Specification 143

Frequently, component architecture modeling activity assumes the existence of
third-party components, legacy systems and packages that will be used for provision-
ing the components specifications [2]. Adaptation and composition are core activities
in component architecture specification for which support is required. Existing sup-
port is restricted to the provisioning phase (i.e. implementation), and it is often de-
pendent on the implementation technology [3][4][5]. A critical issue is to match the
services specified by the component architecture and the existing functionality while
provisioning the solution. If component reuse aims at decreasing development efforts,
it is required that CBD focus shifts from implementation to design, particularly archi-
tectural design. Hence, detecting and handling existing conflicts within the compo-
nent architecture definition decreases the workload to adapt and compose components
during the provisioning phase. If these issues are deferred to the implementation
phase, their resolution may require extra work to adapt and compose components,
possibly jeopardizing the defined architecture and requiring the selection of other
components.

This work addresses the specification of component architecture by reusing avail-
able components, providing support to adaptation and composition activities. By
considering these activities at architectural level, the focus is set on the definition of a
conceptual solution for the system, to be detailed and implemented at the provisioning
phase. The paper describes a set of functionalities for supporting adaptation and com-
position activities, and describes how these functionalities were implemented in
Odyssey-Adapt, a plug-in of Odyssey Environment [6]. The paper also reports a pre-
liminary study on the use of the proposed functionalities.

The remainder of this paper is structured as follows. Section 2 summarizes the key
aspects of composition and adaptation activities within architecture specification.
Section 3 details the proposed functionalities for supporting CBD, focusing in adapta-
tion and composition at architectural level, and Section 4 describes how they were
made available in Odyssey-Adapt. Section 5 describes a preliminary evaluation of
Odyssey-Adapt. Finally, Section 6 presents some conclusions and future work.

2 Related Work

Adaptation refers to activities resulting in component modification to solve structural
and/or behavioral problems (i.e., incompatibilities), so that it meets the requirements
of a particular software application. Structural incompatibility includes all syntactic
issues between the provided interface of a component and the required interface of
another one: a) interfaces with different names; b) interfaces with different number of
methods; c) interfaces with methods that differ in their signatures, and any combina-
tion of these [7][8]. Behavioral incompatibility refers to a semantic mismatch between
the service provided by a component and the one required by another one. A hybrid
incompatibility merges both structural and behavioral ones.

There exists a number of techniques proposed for adapting components [3][4].
Most frequently designers do not have access to component internals when reusing
third-party components, legacy systems or packages. Wrapper and Proxy are common
black-box adaptation techniques. Wrapper defines a container component that encap-
sulates the original one and forwards the requests to it. Proxy defines a component

144 L. Spagnoli et al.

that mediates the communication between two components. It is possible to identify
the correspondence between these techniques and known design patterns such as
Adapter, Proxy, and Facade [9].

UML-based CASE tools have been suggested as CBD design environments, and
this tendency may increase with the UML 2.0 features for component modeling [11].
Academic tools can be found in [12][13], which in addition explore design patterns to
develop new components. All these design environments lack functionalities to sup-
port the modeling of applications with components in general, and therefore, do not
fully address the requirements involving the search, adaptation and composition of
available components. Wren [10] is an example of CBD prototype environment that
supports components modeling, using an extended UML notation which is similar to
UML 2.0. Wren focuses on component composition, by supporting the connection of
provided and required interfaces, independent of any specific technology. However,
the adaptation activity is not addressed at all. Other CBD tools addressing architec-
tural level also do not have functionalities to support adaptation activities [5]. Hence,
it is necessary to further detail the type of support required for the adaptation activity,
and to develop environments that provide such support.

3 Functionalities for Component Architecture Specification

In this section we present a set of functionalities targeted at supporting adaptation and
composition activities within component architecture specification. By specifying the
problems to be addressed during these activities, it is possible to develop more com-
prehensive CBD support environments. Our approach focuses on handling conflicts
during component architecture specification, with the goal to decrease the workload
to adapt and compose components at the provisioning phase, as well as the need for
architecture revision. These functionalities were proposed according to the following
assumptions: a) adaptation and composition are entwined activities, since many be-
havioral or structural mismatches are identified when components are to be integrated
through their required/provided interfaces; b) at architectural level, adaptation and
composition activities define the structure of a solution, which is to be detailed and
implemented during the provisioning phase; c) adaptation is the frequent and repeti-
tive activity of applying standard solutions to recurrent problems, which are captured
by widely known design patterns (e.g. Proxy, Adapter, Facade); d) it should be possi-
ble to identify and mark all behavioral and/or structural adaptations that are required,
and to deal with them in the due time ; e) it should be possible to identify in the archi-
tecture which units were introduced to solve adaptation and integration problems. The
proposed functionalities are:

− Component Architecture Modeling: the component architecture modeling activ-
ity should be supported, according to some specific notation (e.g. UML 2.0). It
should allow the creation of interfaces, components (with provided and required in-
terfaces), as well as the connection of components through their interfaces. Com-
ponents should be considered at any granularity level, ranging from (sub)systems
to functions. In the following, we refer to the product of such an activity as the
Component architecture diagram [2].

 Adaptation and Composition Within Component Architecture Specification 145

− Component Search and Specification Inspection: in a reuse perspective, it
should be possible to search for potentially interesting existing components. The
search for components is a complex task, particularly considering third-party com-
ponents, and thus involves dealing with search engines and repositories that may
be even out of the scope of the CBD environment. Search issues are addressed in
[14][15], and are out of the scope of this paper. Once interesting components are
identified, we assume their specifications are available in some repository for
inspection, to which the CBD environment has access. At architectural level, the
focus is on interface descriptions, disregarding whether a detailed design or
implementation exists or is available. Component specification must include inter-
face/methods/parameters names, parameters type, component and operation seman-
tics (e.g. contracts, textual description), as well as any other type of additional
documentation.

− Component Composition: this functionality aims to support designers in estab-
lishing dependencies between required and provided interfaces of components to
compose the application architecture.

− Mismatch Identification: this functionality involves a fine-grained evaluation of
incompatibilities among selected components. We distinguish between the identifi-
cation of the incompatibility, and its resolution, which are two tasks that can be
developed at distinct moments of the AE process. In addition, we assume that ad-
aptation and composition are entwined activities. Hence, incompatibilities are most
probably identified when trying to compose components. Thus, the designer should
be able to mark both an interface and a dependency between interfaces as incom-
patible. The latter is referred to as incompatibility dependency, which marks and
documents a mismatch between a required and a provided interface. As mentioned
in Section 2, three types of incompatibilities should be considered: structural,
behavioral and hybrid.

Structural incompatibilities should be automatically discovered by a detection
function that compares the specification of these interfaces. A structural incom-
patibility detection algorithm is trivial, and compares interfaces name, type (i.e.
provided, required), number of methods in the interfaces, and methods signatures
(method name, and number and type arguments). If at least one incompatibility is
found, the interfaces should be considered structurally incompatible. This function
should also document all structural incompatibilities found.

On the other hand, the automatic identification of behavioral incompatibilities is
much harder. Formal specification of component interfaces, including the seman-
tics of operations, would allow some automatic detection of this type of incompati-
bility, but this is still an open research area [16]. A behavioral incompatibility
refers to a specific provided interface and should be documented as well.

To sum up, this functionality will only allow components composition if no
incompatibilities are detected. Its aim is at supporting the marking/detection of be-
havioral incompatibilities, automatic detection of structural incompatibilities, and
establishment of the appropriate dependency according to the type of incompatibil-
ity at hand.

− Adaptation: incompatibility dependencies merely highlight which connections
between components require adaptation. This functionality should support the
adaptation and actual composition of adapted components at architectural level,

146 L. Spagnoli et al.

preferably by the automatic application of standard adaptation techniques. Adapta-
tion at this level focuses on the structure of an architectural solution for the detec-
tion of incompatibilities, and the input of documentation that provide guidance for
the later realization of this solution. The goal is to reduce as early as possible the
critical mismatches between expected services and available assets, which puts at
risk the defined architecture. The actual adaptation is to be carried out at the provi-
sioning phase, when component implementation and infrastructure details (i.e.
component framework) are considered.

− Architecture/Component Alternative Views: it should allow different views of
components and component architecture, as well as the visual distinction between
original and adapted components. Certain adaptation techniques (e.g. wrapper) re-
sult in complex components (grouping components), whose internal architectures
include the original ones. This functionality should allow the designer to inspect
the internal details of complex components. In this way, he could choose to view or
hide component internal details, at any moment. Incompatibilities should be high-
lighted using different colors and icons, and all documentation should be available
for inspection at any time.

4 Odyssey-Adapt

Odyssey is a reuse environment based on domain models that supports CBD in both
DE and AE processes. The environment provides a kernel that contains basic tools to
create and instantiate domain models. Other tools are available through plug-ins.
Odyssey-Adapt was developed as a plug-in that supports the adaptation and composi-
tion functionalities discussed in Section 3. This section discusses how Odyssey-Adapt
addresses these functionalities, illustrating their use in a hypothetical scenario of an
online store application.

4.1 Component Architecture Modeling

Odyssey supports component diagrams according to UML 2.0. Fig. 1 illustrates Odys-
sey modeling environment interface, which is divided into two main windows. The
leftmost window contains the Semantic Tree, where all the available artifacts are
listed, including components and interfaces. The Modeling Area (right window) al-
lows the creation of a logical component diagram. New interfaces and components
can be created and edited using, respectively, the interface specification tab and the
component specification tab (not visible in Fig. 1). The Modeling Area of Fig. 1
stresses the important constructs of UML 2.0 for the component architecture model-
ing: components, required and provided interfaces, and interface connectors. The
latter can be either represented by assembly connectors (ball and socket direct con-
nection) or by dependencies (dashed arrow) between required and provided interfaces.
Fig. 1 illustrates a scenario in which the user has selected five components to consti-
tute the component architecture: ShoppingCart, Order, Customer, Account and Prod-
uct. All selected components were inserted in the Modeling Area, through drag and
drop actions. It should be noticed that Odyssey-Adapt works uniformly at any level of
component architecture specification. For instance, ShoppingCart component itself
could be defined in terms of lower-grain components (DollarExchange, EuroEx-
change, PaymentAuthorization, CartContentManager, etc), as depicted in Fig. 2.

 Adaptation and Composition Within Component Architecture Specification 147

Fig. 1. Odyssey Environment with Odyssey-Adapt plug-in

Fig. 2. ShoppingCart internal component architecture

4.2 Component Search and Specification Inspection

Odyssey-Search is a multi-agent system for component search and retrieval [17],
which is not discussed here due to space limitations. When the user selects a compo-
nent, either within the Semantic Tree or in the Modeling Area, he can inspect its
details through the component specification.

The specification (Fig. 3a) indicates the provided and required interfaces of the
component. Details about the interfaces methods (including names, return types and
attributes) are available in the interface specification (Fig. 3b). Any additional docu-
mentation available on components or interfaces is also available (e.g. documents,
contracts, etc).

148 L. Spagnoli et al.

(a)

(b)

Fig. 3. (a) Component Specification and (b) Interface Specification

4.3 Component Composition

This functionality supports designers on the establishment of an assembly connector
or a dependency between a pair of provided and required interfaces. Whenever a
provided and a required interface are related, Odyssey-Adapt triggers the income-
patibility detection function. If no incompatibilities are identified, the assembly
connector/dependency is established. Otherwise, an incompatibility dependency is

 Adaptation and Composition Within Component Architecture Specification 149

established between these interfaces, highlighting that these components require some
kind of adaptation before their interfaces can be actually integrated. In the scenario of
Fig. 1, the designer related Order.iPerson and Customer.iPerson using the depend-
ency connector, and Customer.iAccount and Account.iAccount using the assembly
connector. These connectors were created since no incompatibilities were detected.

4.4 Mismatch Identification

As mentioned, structural incompatibilities are automatically discovered by a detection
function that compares the specification of the two interfaces to be connected. This
function compares interfaces name, type (i.e. provided, required), number of methods
in the interfaces, methods signatures (method name and arguments number and
types). If at least one incompatibility is found, the interfaces are considered structur-
ally incompatible. On the other hand, the identification of behavioral incompatibilities
is in charge of the designer, due to the complexity of automatic detection. Hybrid
incompatibilities are also automatically detected, provided that the behavioral incom-
patibility has been previously marked.

Currently, the designer marks a particular interface as behaviorally incompatible by
selecting a provided interface and by using the respective popup menu. The incom-
patible interfaces are drawn using a darker color (Fig. 4), allowing the designer to
immediately identify the ones that do not provide the expected services. The designer
may document the behavioral problems using an Incompatibility Note as free format
text. In our scenario, the designer realizes that although Order and Account are useful,
they do not provide exactly the required services. Thus, he marks interfaces Or-
der.iOrderEntry and Account.iAccount as behaviorally incompatible, and document
the problems.

Fig. 4. Incompatibility dependencies

Incompatibility dependencies highlight connections between components that re-
quire adaptation. Three new stereotypes were created for dependency relationships
that represent incompatibility dependencies (Fig. 4). Whenever the designer tries to
relate interfaces using the assembly connector/dependency, Odyssey-Adapt searches

150 L. Spagnoli et al.

for incompatibilities. If there no structural incompatibilities are found and the pro-
vided interface is not marked as behaviorally incompatible, the interfaces are related.
Otherwise, it connects the interfaces using the appropriate incompatibility depend-
ency (i.e. structural, behavioral or hybrid).

An incompatibility report is created whenever a structural/hybrid incompatibility is
detected by Odyssey-Adapt. In case the incompatibility is hybrid, it merges the struc-
tural problems detected with the Incompatibility Note provided by the designer. The
incompatibility report window (Fig. 5) presents the type of incompatibility, the name
of connected interfaces, and details about all incompatibility problems.

Fig. 5. Incompatibility report

4.5 Adaptation

This functionality supports the adaptation of components at architectural level by the
automatic application of design patterns representing common adaptation techniques.
Currently Odyssey-Adapt implements the patterns Adapter (Wrapper), Proxy, and two
variations of Facade. Recall that adaptation at this level focuses on the structure of an
architectural solution to detected incompatibilities, and the input of documentation
that supplies detailed directions, guiding the effective realization of this solution. The
actual adaptation is to be carried out in the solution provisioning phase, when compo-
nent implementation and infrastructure details are considered.

Components, interfaces and dependencies with incompatibilities present in their
popup menu an adaptation function. This function displays the Components Adapta-
tion Wizard, in which the designer is presented with all candidate interfaces for adap-
tation, i.e. the ones related through an incompatibility dependency. By selecting a
candidate interface, the window displays the interface(s) to which it is related and the
applicable patterns. By evaluating all different choices on where to apply the adapta-
tion, and through which technique, the designer is supported to make better decisions.

The user is also supported on the adaptation itself, since it concerns the straight-
forward application of a known technique. The user can solve one or more incompati-
bilities at a time. To do that, he iteratively selects an interface and a pattern among the
applicable ones, and adds this selection to the adaptation tasks list. By the end of the
interaction, the work list is applied, resulting in the creation of one or more compo-
nents. Considering

Fig. 4, suppose that the designer decided to solve the behavioral incompatibility
Order.iOrderEntry using a wrapper (adapter patter), and the structural incompatibility

 Adaptation and Composition Within Component Architecture Specification 151

Fig. 6. Resulting component architecture and internal adapter architecture

involving iOrderableItem using a proxy. These two adaptations are added to the tasks
list, and the result of their application is depicted in Fig. 6.

After adaptation takes place, the assembly connector replaces all handled incom-
patibility dependencies in the architecture. Adapter and FacadeAdapter patterns result
in a complex component, which substitutes the original one. The internal architecture
of this new component is modeled in a new, separate diagram. The Proxy and Fa-
cadeProxy patterns lead to the creation of a new component in the modeling window,
which is related to the original ones. In Fig. 6., NewOrder is the result of applying the
Adapter pattern to solve the behavioral incompatibility of Order, thus substituting this
component in the architecture diagram. The details of Order can be inspected in a
separate diagram on demand. NewOrderProductProxy is the component that solves
the structural mismatch between Order and Product, according to the proxy pattern.
The designer uses this functionality as many times as necessary: it provides a prelimi-
nary solution that needs to be refined and implemented. Designers should document
all refinements that must take place during detailed component design and implemen-
tation.

4.6 Architecture/Component Alternative Views

All new components resulting from adaptation are displayed in the architecture dia-
gram using a darker color, to allow the immediate realization of components inserted
by adaptation activities. Their internal details can be visualized in a separate diagram
(Fig. 6.). Incompatibilities are highlighted using different colors and stereotypes, and
incompatibility documentation is available at any time for inspection.

152 L. Spagnoli et al.

5 Evaluation Study

The importance of empirical studies has been stressed in Software Engineering. A
preliminary study was performed to evaluate Odyssey-Adapt support for adaptation
and composition, comparing it with the modeling support available in Odyssey. To
prepare the study plan, a five step process, as defined in [18], was followed: defini-
tion, planning, operation, analysis and presentation/packaging.

5.1 Study Definition and Planning

The objective of the study was defined as: “analyze Odyssey-Adapt and ad-hoc
approaches for component adaptation and composition, for the purpose of characteri-
zation, with respect to viability and productivity, from the point of view of the
researcher, in the context of graduate students in an academic environment”. Two
student groups would use Odyssey to adapt and compose components. The first group
would use Odyssey basic component architecture modeling functionalities, and the
second one would use the specific functionalities for adaptation and composition
available through Odyssey-Adapt plug-in. Then, the study plan was detailed with the
definition of the experiments questions, hypothesis, metrics and design. Three main
questions with the related hypotheses were formulated:

Q1) Does the Odyssey-Adapt group detect more incompatibilities than the Odys-
sey group?
Q2) Does the Odyssey-Adapt group perform more adaptations over the detected
incompatibilities than the Odyssey group?
Q3) Does the Odyssey-Adapt group adapt components faster than Odyssey group?

For all three questions, the hypotheses were defined in terms of the better perform-
ance of Odyssey-Adapt group, and the null hypotheses were the opposite. A toy prob-
lem in the mobile phone domain was defined for this experiment, as well as a set of
metrics to answer these questions with regard to the toy problem, namely: number of
correct incompatibilities identified number of correct component adaptations, the
number of incompatibilities correctly solved and total time needed to detect and solve
all incompatibilities. Subjects were randomly divided into the two groups, and metrics
collected per subject.

5.2 Study Operation

Six graduate students from the Software Engineering Lab at Federal University of Rio
de Janeiro were selected to participate in the study, which was in charge of the second
author of this paper. All subjects received a quick training on adaptation and composi-
tion in Odyssey, but only the second group was trained to use the Odyssey-Adapt
functionalities. After that, they had to compose eleven available components through
eighteen interfaces to build a mobile phone application component architecture. These
components presented structural incompatibilities that had to be detected and solved
by adaptation. The subjects also filled in questionnaires to facilitate the analysis of
quantitative results and enable qualitative evaluation.

 Adaptation and Composition Within Component Architecture Specification 153

5.3 Result Analysis, Presentation and Packaging

Descriptive analysis and Mann-Whitney hypothesis test [19] were used in the quanti-
tative analysis of the results. The qualitative information was also analyzed. The most
interesting results are discussed in the remaining of this section.

From the total of 61 incompatibilities, Odyssey group subjects detected an average
of 40.7 incompatibilities, with a standard deviation of 6.5. Odyssey-Adapt group per-
formed better, detecting an average of 46 incompatibilities, with a standard deviation
of 4. The number of correct component adaptations was very similar in both groups.
In the Odyssey group, only one subject incorrectly performed two adaptations, out of
the eight adaptations required. The adaptation errors made by the subjects are being
used to improve the Odyssey-Adapt Components Adaptation Wizard. The average
time to complete the task was also measured per subject, extracting the time spent
with the questionnaires. The Odyssey-Adapt group performed better, with an average
time of 49 minutes compared to the average 58 minutes from Odyssey group. The
standard deviations were 27 and 12, respectively.

Even with better results observed the Odyssey-Adapt group, the null hypothesis
(i.e. similar or inferior performance) could not be rejected, due to the low number of
subjects and the statistical test low power. Hence, despite the encouraging results,
more subjects are needed in order to statistically confirm the hypothesis of usefulness
and efficiency provided by Odyssey-Adapt functionality.

By examining the qualitative information provided by subjects in the question-
naires, it was possible to collect some interesting qualitative data. The three subjects
from Odyssey-Adapt group answered that they did not have difficulties to detect in-
compatibilities, whereas the ones from the Odyssey group stated the opposite. The
subjects that used Odyssey-Adapt also stated that they did not have difficulties for
using the tool (one of them claimed minor difficulties). All subjects were also asked
to make suggestions to improve the tool used in the experiment. The Odyssey subjects
suggested most of the features that are already available in Odyssey-Adapt. The sug-
gestions from the Odyssey-Adapt group are under consideration and may be included
in the future, such as the possibility of manually mapping equivalent methods from
components interfaces.

This study was only a first step towards the evaluation of Odyssey-Adapt. Further
studies comparing it to different CASE or CBD tools, with greater number and more
experienced subjects, in real scenarios, are required to obtain conclusive results.

6 Conclusions

To effectively promote reuse, CBD must support selection, adaptation and composi-
tion of components as early as possible in the application development life-cycle. In
this paper, we presented a set of functionalities targeted at supporting adaptation and
composition activities during AE. Due to the focus on component architecture defini-
tion, these activities aim at defining the structure of an architectural solution. In later
phases, this solution must be refined and provisioned with detailed component design
and/or implementation. Our approach minimizes the risks of the late consideration of
mismatches between the services, as defined by the architecture, and the available

154 L. Spagnoli et al.

assets, which may require modifications of the architecture. It also reflects the prac-
tice of designing the architecture with the existing reusable assets in mind.

Current CBD environments do not provide explicit support to adaptation activity,
which involves at least identifying mismatches and applying standard adaptation
techniques. It is also useful to recognize in the component architecture which parts
correspond to adaptations, as well as to be able to trace reused components into
adapted components, and vice-versa. These issues are addressed by the proposed set
of functionalities. Odyssey-Adapt is a plug-in of the Odyssey Environment that im-
plements the proposed functionalities. Odyssey-Adapt can be improved in many ways,
particularly in the (semi)automatic detection of behavioral incompatibilities, traceabil-
ity and recommendation of adaptation techniques. Future work includes enhance-
ments of the tool features, further evaluation studies for more conclusive results and
coupling of the tool with a repository infrastructure.

References

1. Brown, A.; Short, K.: On Components and Objects: The Foundation of Component-Based
Development. In: 5th International Symposium on Assessment of Software Tools and
Technologies (1997) 112-121

2. Brown, A.: Large-scale component-based development. Prentice Hall (2000)
3. Bosch, J.: Superimposition: A Component Adaptation Technique. Information and Soft-

ware Technology, 41(5), March (1999) 257-273
4. Heineman, G., Ohlenbusch, H.: An Evaluation of Component Adaptation Techniques.

Technical Report WPI-CS-TR-98-20. Available in http://www.cs.wpi.edu/~heineman/
classes/cs562/pdf/HO99.pdf

5. Cechich, A., Prieto, M.: Comparing Visual Component Composition Environment. In:
22nd International Conference of the Chilean Computer Society (2002) 217-225

6. The Odyssey Project Homepage, 2006. http://reuse.cos.ufrj.br/odyssey/index_en.html, ac-
cessed in 01/2006

7. Rine, D., Nada, N., Jaber, K.: Using Adapters to Reduce Interaction Complexity in Reus-
able Component-Based Software Development. In: Symposium on Software Reusability
(1999) 37-43

8. Küçük, B., Alpdemir, M. N., Zobel, R. N.: Customizable Adapters For Blackbox Compo-
nents. In: Nierstrasz, O. (Editor). International Workshop on Component-Oriented Program-
ming (1998) Available in http://citeseer.nj.nec.com/article /kucuk98customizable.html

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley (1995)

10. Lüer, C., Rosenblum, D.: Wren - An Environment for Component-Based Development.
In: 8th European Software Engineering Conference (2001) 207-217

11. UML 2.0 Superstructure Final Adopted Specification. Available in http://www.omg.org/
cgi-bin/apps/doc?ptc/03-08-02.pdf

12. Keller, R., Schauer, R.: Design Components: Towards Software Composition at Design
Level. In: 20th International Conference on Software Engineering (1998) 302-317

13. Yacoub, S., Xue, H., Ammar, H.: POD: A Composition Environment for Pattern-Oriented
Design. In: 34th Technology of Object-Oriented Languages and Systems (2000) 263-272

14. Seacord, R., Hissam, S., Wallnau, K.: Agora: a search engine for software component.
IEEE Internet computing 2-6, Nov/Dec (1998) 62-70

15. Meling, R., Montgomery, J., Ponnusamy, P., Wong, E., Mehandjiska, D.: Storing and
retrieving software components: a component description manager. 12th Australian Soft-
ware Engineering Conference (2000) 107-117

 Adaptation and Composition Within Component Architecture Specification 155

16. Zaremski, A., Wing, J.: Specification Matching of Software Components. ACM Transac-
tions on Software Engineering and Methodology, 6(4), October (1997) 333-369

17. Braga, R. M. M., Werner, C. M. L., Mattoso, M. L. Q.: Odyssey-Search: A Multi-Agent
System for Component Information Search and Retrieval. Journal of Systems and Soft-
ware, Elsevier, 79(2), (2006) 204-215.

18. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., and Wesslén, A.: Experimen-
tation in Software Engineering: an introduction. Kluwer Academic Publishers, USA (2000)

19. Siegel S., Castellan N.J.: Non-parametric Statistics for the Behavioral Sciences, McGraw-
Hill, 2 ed., New York (1988)

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 156 – 169, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Re-engineering a Credit Card Authorization
System for Maintainability and Reusability of

Components – A Case Study

Kyo Chul Kang1, Jae Joon Lee1,*
, Byungkil Kim1, Moonzoo Kim1,

Chang-woo Seo2, and Seung-lyeol Yu2

1 Software Engineering Lab. Computer Science and Engineering Dept.
Pohang University of Science and Technology, Pohang, South Korea
{kck,gibman, dayfly, moonzoo}@postech.ac.kr

2 System Development Team and Quality Management Team, LG-Card Co.
118, Namdaemun 2 ga, Jung-gu, Seoul, South Korea

{cwseo, toto}@card.lg.co.kr

Abstract. A credit card authorization system (CAS) is a large information sys-
tem performing diverse activities such as purchase authentication, balance
transfer, cash advances, etc. One characteristic of CAS is its frequent update to
satisfy the needs of customers and newly enforced governmental laws. Thus,
CAS should be designed to minimize the effects of updates, for which high
reusability of the CAS components is desired. In this paper, we present our
experience of re-engineering CAS based on a feature model for improved reus-
ability of components, which alleviates the difficulty of system maintenance.
The result of this project has been successfully transferred to the company.

1 Introduction

A credit card authorization system (CAS) is one of the largest information systems
used worldwide. CAS handles various types of transactions in large volume, such as
purchase authentication, balance transfer, affiliated discount services, etc. One char-
acteristic of CAS is its frequent update, and the maintainability of CAS is a crucial
issue for credit card companies. Government frequently creates and enforces laws
targeting the business of card companies. In addition, due to heavy competition in the
credit card market, card companies are pressed to offer new services or change exist-
ing services frequently. For example, the discount rate on gas purchase for freight
vehicles changes many times a year due to gas price changes and discount rate
changes of other card companies. These situations cause constant revisions of CAS,
which increases the complexity of system maintenance. Thus, in order to manage
frequent revisions, CAS should be designed to accommodate changing requirements
easily and isolate effects of updates as much as possible.

* Jae Joon Lee is currently at Fraunhofer Institute for Experimental Software Engineering,

Fraunhofer-Platz 1, D-67663 Kaiserslautern, Germany (jaejoon.lee@iese.fraunhofer.de).

 Re-engineering a Credit Card Authorization System 157

From the review of the CAS of LG Card Co. Ltd, we found several opportunities to
enhance reusability of the CAS components. One manifest problem was that new
services have been added to CAS by simply adding new components specially devel-
oped for those services without consideration of common/reusable characteristics of
the services. This was caused by the lack of proactive design that anticipates updates
of services based on market evolution. This ad-hoc way of evolution resulted in re-
dundant code and difficulty of understanding program behavior. As a result, newly
added services or updates of services easily affected unnecessarily large segments of
CAS and caused high maintenance costs.

In this paper, we present our experience of improving reusability of the CAS com-
ponents through proactive re-engineering based on a feature model. First, we re-
viewed the existing CAS code and the revision history with help of domain experts
and extracted the legacy design. Then, we constructed a feature model of the CAS
domain that captures variabilities of CAS from the revision history and a market
analysis [1][2][3]. Based on the recovered legacy design and the feature model, we
could re-design components of CAS to preplan adoption of future evolution, which
enhanced system maintainability. This re-engineering task was conducted based on
three re-engineering principles: encapsulation of variabilities, generalization of com-
mon processes, and separation of data-streams.

Section 2 describes related works briefly. Section 3 gives an overview of CAS and
its corresponding feature model. Section 4 explains the three design principles we
applied to the re-engineering task. In section 5, we explain details of the re-engineering
task. Lessons learned from this re-engineering project are summarized in section 6.
Finally, we conclude this paper with future works in section 7.

2 Related Work

There have been active researches for improving maintainability and reusability of
software systems. One of difficult problems in software maintenance is that there
exists duplicated code among multiple components that enlarges change efforts and,
thus, increases the difficulty of maintaining systems. In order to alleviate this prob-
lem, in addition to applying fundamental software engineering principles such as
decreasing component coupling and increasing functional cohesion [4], software
metric [5], software visualization [6], and concept analysis [7] have been used.

There are several important classes of researches focused on reusability in the in-
formation systems domain. For information systems, process workflows should be
designed with consideration of reusability of the components that handle business
processes. The workflow management coalition [8] defines a standard architecture
and component interfaces to design workflows conveniently. [9] studies reuse of
existing workflows based on the characteristics of data dependency among processes.
[10] proposes guidelines for architecture design and development processes for reus-
able business components, and [11] describes refactoring techniques focusing on
improved system maintainability.

Although these works contribute to enhancing reusability and maintainability of
business components and workflows, domain analysis to encapsulate variabilities and
reuse commonalities must precede these activities in order to enhance the benefits

158 K.C. Kang et al.

further. We use a feature model for domain analysis, and apply the analysis results
and re-engineering principles to make a proactive design for improved reusability and
maintainability.

3 Overview of Card Authorization System

This section describes the background of the CAS domain. We explain the back-
ground of this project in section 3.1 followed by an overview of CAS in section 3.2.
The feature model of CAS is given in section 3.3.

3.1 Background of the Re-engineering Project

In the year 2004, LG-Card Co. Ltd [12] adopted a component based development
(CBD) method [13][14] and started to re-develop CAS by converting hard-coded
business rules into a database and standardizing component interfaces. Moreover, to
enhance the reusability of components, they continuously applied several component
based management (CBM) programs [15][16] such as reuse rate measurement, com-
ponent library construction, and component re-engineering. Nevertheless, they had
difficulties in maintaining CAS. The developers added/updated components in an ad-
hoc way at each update request, which brought about duplicated code and complex
component interactions. As a result, this reactive maintenance caused high mainte-
nance costs even with simple changes.

To solve these problems, LG-Card requested POSTECH in the year 2005 to evalu-
ate and improve the credit card and check card systems that are the core of the entire
CAS. With the request, the POSTECH team studied the CAS domain and
re-engineered CAS for six months to enhance maintainability by improving the reus-
ability of CAS components.

3.2 Overview of CAS

Fig.1 shows an overview of CAS. The left part of Fig.1 shows CAS and its environ-
ment. CAS interacts with NET24, a middleware working as an interface between
CAS and banks, point of sales (POS), and customer services. In addition, CAS com-
municates with a database system to retrieve and update transaction information. The
Net24Main component of CAS directly interacts with NET24 and distributes transac-
tion requests from outside to the credit card system or to the check card system
accordingly. Each card system consists of four component layers: transaction classi-
fier (TC), transaction flow manager (TFM), business process component (BPC), and
interface component (IC).

The main task of TC is to classify transaction types and to call appropriate TFM
components. The TFM components manage transaction flows by controlling business
processes implemented in the BPC components. The IC components work mostly as
data holders communicating with the database system. The component manager
handles orderly creation of these components preventing redundant instantiation.

Components of a higher layer control the components of a lower layer via call/return
methods; a TC component calls appropriate TFM components, then a TFM compo-
nent calls BPC components, etc.

 Re-engineering a Credit Card Authorization System 159

Fig. 1. Overview of CAS

Fig. 2. Execution flow of the check card transactions

Fig.2 illustrates how these layers work in the check card system.1 When a user
purchases a product using his/her check card, a purchase authorization request is sent
from the store to CAS. Then, ChkCdClsf, a TC component for classifying check
card transactions, recognizes the type of the transaction and calls VrfyReqTrs, a TFM
component, to check if the requested transaction is valid or not. VrfyReqTrs calls
TransVIdChk, ScrUserAuth, CdInfoChk, and others in sequence. TransVIdChk
identifies the place where the transaction occurs. If the transaction occurs at an online
store, ScrUserAuth is called to check the user’s identification and password. Other-
wise, ScrUserAuth is not invoked. Then, CdInfoChk is called to verify whether the
given card information, such as the expiration date and the name of cardholder,
matches with the information in the CAS database. Similarly, other BPC components
are also called according to the transaction flow encoded in VrfyReqTrs. Once
VrfyReqTrs has finished authorization of the transaction, VrfyReqTrs sends a re-
quest to the bank that issued the check card to check if the bank account has enough
balance for the purchase. After receiving that request, the bank sends to CAS a new

1 The credit card system has 4 TFM components and the check card system has 5 TFM com-

ponents. There exist 39 BPC components and 71 IC components shared by both systems.

160 K.C. Kang et al.

transaction request that contains required information. Then, the request is passed to
RespTrs, and RespTrs calls TransVIdChk.2

3.3 A Feature Model of CAS

In order to improve the maintainability of CAS, we need to re-design CAS with con-
sideration of potential service changes based on the revision history and market pro-
jections. A feature model is a suitable tool to capture variability of services and
make a proactive design for evolving services based on relationships among features.
We analyzed commonalities and variabilities of the CAS domain first and developed
a feature model shown in Fig. 3.3 CAS (the root node of Fig.3) consists of “Check
Card Authentication” and “Credit Card Authentication” each of which corresponds to
authentication features for check card and credit card respectively. In addition, CAS
has “Affiliated Service” feature that represents various affiliated services such as pur-
chase discount, free service, etc.

Features that change frequently are named in italic font in Fig. 3. For example,
features related to “Affiliated Service” are indicated as frequently updated features.

Fig. 3. A feature model of CAS

2 Note that VrfyReqTrs and RespTrs share many BPC components because these two TFM

components perform similar tasks. This redundancy problem comes from the legacy design
of earlier CAS and has not been fixed yet due to risk of a large scale revision.

3 Features corresponding to business processes are not shown in this paper.

 Re-engineering a Credit Card Authorization System 161

Table 1 includes the revision history of CAS from July 2005 to August 2005. As can
be seen in Table 1, there are frequent revisions due to newly added affiliated stores
and changes of affiliated services. “Discount Service” (located at the top right corner
of Fig.3) is an affiliated service for handling purchase discounts. This feature is spe-
cialized to “Handicapped Welfare Service” and “Freight Car Oil Supp. Service” fea-
tures. “Handicapped Welfare Service” is a service that provides discount when a
handicapped cardholder purchases daily necessities. “Freight Car Oil Supp. Service”
provides discount to a freight vehicle driver for gas purchases. Changes of “Discount
Service” affect “Discount Service Update”, “Discount Service Check”, and “Discount
Limit Check” as indicated by the configuration dependency relationships.

As shown in Fig.3, changes in one feature (e.g., “Discount Service”) can affect sev-
eral other features (e.g., “Discount Service Update” and “Discount Service Check”),
which requires to modify related components altogether. This is a complex task with-
out knowing explicit relationships between features. After we identified frequently
changing features and related components, we could re-engineer these components to
prepare adoption of future revisions by improving reusability of these components.

Table 1. CAS revisions between July 2005 and Aug 2005

Date Revisions

Changed codes of refusing transactions for a family restaurant discount service.
- If the service is not applicable to the card owner, return the refusal code 588.
- If there was no transaction in the previous month, return the refusal code 593.

Aug 16

Added an affiliated service code for the DW department store.

Added an affiliated service code for the KB department store.
Aug 4

Added a business process to restrict a discount service for “LG BF” Card

If a welfare service for handicapped people is requested by a handicapped
user using a family card, the transaction should be refused.

July 13

Changed a business process for the oil discount service for freight vehicles
- removed freight vehicle oil discount codes K002 and K003
- modified the codes between K011 and K020.

July 11 Added an affiliated discount service for DJ Zoo.

July 04 Added a business process for a discount service used by MIC

4 Re-engineering Principles

Based on the review of the design and the revision history of CAS, we propose three
principles for making a proactive system design through re-engineering. These prin-
ciples can serve as a primary design plan, which is indispensable in any engineering
projects of sizable scale.

4.1 Principle 1: Encapsulation of Evolving Features

A complex system like CAS usually suffers from high degree of coupling among
components. This problem often occurs when new components for the requested

162 K.C. Kang et al.

services are implemented by copying and modifying existing components without
reorganizing/refactoring them. High coupling among components makes the behavior
of the system difficult to understand and, thus, it is hard to revise and maintain the
system, degrading evolvability.

To address this problem, we propose to encapsulate frequently changing features in
a component. In other words, we group components for evolving features into a mod-
ule that provides a common interface to the rest of the system. By this encapsulation,
we can decrease the degree of component coupling and localize the effects of compo-
nent update into a module. In addition, details of components can be abstracted away,
which provides better system understandability.

4.2 Principle 2: Generalization of Common Processes

Information systems provide a large number of services some of which are similar
with minor distinction. Thus, without careful anticipation of changes, multiple com-
ponents with slightly different services easily prevail in the system. When a change is
made to a common process, multiple components that implement the process should
be modified altogether. In addition, it becomes hard to find which component is re-
sponsible for a specific behavior of the system, which degrades the maintainability of
the system.

Therefore, it is highly desirable to make generalized components for common
processes so that the degree of redundancy could be decreased. In addition, se-
quences of processing various transactions are valuable domain knowledge that
should be reused to minimize the risk of creating wrong process sequences. Once
common processes are identified, we can build generalized components for the com-
mon processes and then extend the components for specialized processes using inheri-
tance and/or association mechanisms.

4.3 Principle 3: Separation of Upstream Data from Downstream Data

As typical of information processing systems, the main operations of CAS are to
retrieve, process, and update data. Thus, clear and efficient handling of data is at the
core of quirements. For this purpose, all data-streams among components must be
clearly defined. In other words, the source and the destination of a data-flow must be
identified clearly and patterns of data-flows must be visible. This clear identification
of data-streams helps preventing unnecessary modification of multiple components
that access a data-stream.

One way of achieving this goal is to classify data-flows explicitly based on its
characteristic. CAS has a layered architecture consisting of TC, TFM, BPC, and IC
components that process transactions in order. Thus, we could identify two separate
data-streams as follows:

- TC TFM BPC IC for managing transaction information (downstream)
- IC BPC TFM TC for reporting result of transaction validation (upstream)

Based on this information, we could separate data-streams in two directions explicitly,
which provided optimized data structures for each data-stream as well as localization
of change effects when an update to data handling components happened.

 Re-engineering a Credit Card Authorization System 163

5 Re-engineering CAS

In this section, we describe details of the re-engineering task. In section 5.1, we show
how to encapsulate BPC components based on their characteristics. Section 5.2 ex-
plains the design of generalized components. Finally, section 5.3 describes separation
of an upstream data-flow from a downstream one.

5.1 Encapsulation of the BPC Components

In order to improve the reusability of CAS components, it is necessary to minimize
the effects of updates as much as possible. The current layered architecture was de-
signed to achieve this goal by embedding reusable business processes into the BPC
components (i.e., components that embed business workflows are separated from the
components of functional tasks) so that when a business process changes, its effects
would be localized to the corresponding BPC component and the TFM components
that control the BPC component directly. For example, in Fig. 2, suppose that
AfflSvcUpdt BPC component is modified by changing a process of handling
affiliated services. Then, all TFM components accessing AfflSvcUpdt, such as
VrfyReqTrs and RespTrs, should be modified accordingly in the original design.

Fig. 4. Workflow of the business processes of CAS

Considering that most business processes of frequently changing services (e.g.
affiliated services) are embedded in the BPC components, it is crucial to minimize
update effects of the BPC components. We noted that effects of updating the BPC
components could be reduced further by encapsulating BPC components. In other
words, we grouped BPC components of similar characteristics into a module to mini-
mize the change effects. For this goal, we studied the workflow of CAS carefully and
grouped BPC components based on their data usage. Fig. 4 shows workflows of

164 K.C. Kang et al.

business processes of CAS. The table in the left part of Fig. 4 shows what these proc-
esses are and the flowgraph in the right part of Fig.4 shows how these processes are
connected and executed in order.

First, we classified the business processes according to its type of data manipula-
tion – validation (read) and update (write). Processes 1 through 11 are to validate
transaction information and processes 20 through 26 are to update validation results
into the CAS database. Second, we classified processes 1 through 11 further based
on the type of data. Processes 1 to 4 validate mandatory transaction data that should
be validated even for simple transactions such as purchase cancellation.4 Processes 5
to 11 validate optional data such as data about affiliated services (process 8) and short
message service (process 11). Based on this classification, we grouped processes 1
through 4 into the MdDataVld module, processes 5 through 11 into the OpDataVld
module, and processes 20 through 26 into the DataUpdate module.

Fig. 5 shows the re-engineered component design. By encapsulating BPC compo-
nents, we could localize the effect of updating a BPC component to only one module
that incorporates the BPC component instead of multiple TFM components. In the
original design, if AfflSvcUpdt BPC component is changed, all TFM components that
directly access AfflSvcUpdt such as VrfyReqTrs and RespTrs need to be modified
accordingly. In the new design, however, the effect of update is localized to the
DataUpdate module only. In addition, this restructuring alleviated redundancy
among the TFM components because common tasks among multiple TFM compo-
nents to control BPC components were extracted into a new module. For example,
task of controlling TransVldChk, ScrUserAuth, CdInfoChk is moved from TFM
components, VrfyReqTrs and RespTrs, to the MdDataVid module. In the original
architecture, when such a common task of TFM components is updated, we had to
modify all related TFM components. In the new architecture, however, we need to
modify only a corresponding module.

Fig. 5. Encapsulation of the CAS components

5.2 Generalization of the Common Business Processes

As can be seen in Fig. 2, the BPC components were designed to share common busi-
ness processes for various transactions (even transactions of different systems – the

4 In Fig.4, the workflow for purchase cancellation consists of processes 1-4, 5, and 20.

 Re-engineering a Credit Card Authorization System 165

credit card system and the check card system). Existing BPC components were, how-
ever, implemented without considering how the authorization processes could be
changed. Accordingly, when new services were added, the CAS maintainer simply
added new components for the services although these services could be provided
with less effort by using a general component for the common processes of the ser-
vices. This is a typical weakness of reactive maintenance without proactive design.

Let us look at an example. The feature model in Fig. 6 shows two sets of features
for checking discount services, containing “Handicapped Welfare Check” (checking
if welfare discount service is applicable) and “Freight Car Oil Supp. Check” (check-
ing if a gas purchase discount for freight vehicles is available). These two sets of
features were implemented in the HandiWelfareChk and FCarOilSuppChk BPC
components respectively. These two BPC components share a same sequence of
processes such as checking the affiliate service code first, then the period of affiliated
service contract, then the merchant codes, etc. This fact is reflected in the feature
model in Fig.6 showing that these two features are specialized instances of the “Dis-
count Service Check” feature that contains “Card Affiliated Code Check”, “Affiliated
Period Check”, and “Merchant Svc. Code Check” features.

Considering the fact that services are added and changed frequently (see Table 1),
ad-hoc addition of components for services (e.g. FCarOilSuppChk) should be
avoided because it causes redundancy among components. Thus, we need to
re-engineer components so that services of common characteristics should be pro-
vided by generic components. Re-engineered components in Fig.6 show that

Fig. 6. Generalization of the CAS components

166 K.C. Kang et al.

GenDiscntSrvcChk implements common processes of both HandiWelfareChk and
FCarOilSuppChk (e.g. checking the affiliated card code, affiliated period, and affili-
ated merchant code) by generalizing these processes. Thus, HandiWelfareChk and
FCarOilSuppChk are built as extensions of GenDiscntSrvcChk.

The re-engineered components have reusability benefits. Suppose that “Discount
Service Check” feature is changed, e.g., the affiliated period should be checked first.
With the original design, we need to update all BPC components that check discount
services (e.g. HandiWelfareChk and FCarOilSuppChk). This is a burdensome job
because there are many such services. In contrast, we only need to update
GenDiscntSrvcChk in the new component design.

5.3 Classification of Data-Streams – Upstream vs. Downstream Data-Flows

In the original design, components communicate with each other using valued objects
(VOs), which are global data objects containing the transaction information and the
result of validation. A TC component writes down transaction information into VOs
and passes reference pointers to the VOs to TFM components. The TFM components
read the transaction information from the VOs. Similarly, a TFM component proc-
esses the transaction data (e.g. converting a card number into a format compatible
with the database), writes the processed data (e.g. converted card number) into the
VOs, and then passes the reference pointers to BPC components.

This way of communication is simple but problematic. First of all, as depicted in
the left part of Fig.7, data-streams among components become obscure so that it is
hard to visualize component interactions; it is not clear which components modify
VOs and which components are affected by the modification because data-streams are
implicitly constructed through VOs. In addition, cohesion of VO is low because VO
serves multiple purposes of various components. Furthermore, once a component that
accesses VO is modified, all components and VO should be modified accordingly
because VO works as a medium for communications of different types without hiding
information. Suppose that we modify a routine of updating VO in a BPC component.
Then, VO as well as other TC, TFM, BPC, and IC components can be affected
altogether.

We could solve these problems by separating data-streams into upstream data (con-
taining result of transactions validation) and downstream data (containing transaction
information) as depicted in the right part of Fig. 7. For downstream data, only TC and

Fig. 7. Separated data-streams

 Re-engineering a Credit Card Authorization System 167

TFM components write transaction data into the downstream VOs. BPC and IC com-
ponents can read from the VOs, but do not write to the VOs. For the upstream data,
IC and BPC components write the result of transaction validation and TFM and TC
components read the result from the upstream VOs. Furthermore, we apply the facade
pattern to both upstream and downstream VOs to hide internal modification of VOs.

As a result, each data-stream could have its own VO data structure optimized for
its own purpose. Also, the data structure of the upstream VO is immune from
changes of the downstream VO, and vice versa. Similarly, this separation localizes
the effect of modifying a BPC component to the upstream VOs and TC/TFM compo-
nents. Furthermore, component interactions became visible and the responsibilities of
components became clear. Thus, we could anticipate easily which components
should be modified at changes of services.

6 Lessons Learned

In this section, we share the lessons learned from this re-engineering project.

6.1 Necessity of Proactive Re-engineering

During the project, we are convinced that proactive re-engineering is essential, not
optional in many ways. We found several poorly designed legacy CAS components
that caused high maintenance costs. Due to lack of analysis on commonality and
variability of services, developers tend to revise the system in an ad-hoc manner with-
out considering how the system should be designed for better maintainability. This
way of revision results in high degree of redundancy and component coupling, which
degrades maintainability of the system severely as revisions are repeated. Therefore,
proactive re-engineering should be enforced to preplan efficient adoption of future
evolution of services by improving reusability of components. For this re-engineering
activity, a feature model works as a very effective means for capturing variability of
features and creating a proactive design.

6.2 Management of Commonality and Variability

We found that the company had difficulty in managing variabilities of services sys-
tematically. One of the goals in this project was to enhance adaptability of CAS to
frequently changing services. Dependency relationships between features of the
feature model helped us to recognize the effects of service changes/additions. In addi-
tion, generalization/specialization relationships helped us to encapsulate similar com-
ponents into generalized ones and to adopt new services more conveniently (see
section 5.2). Thus, the feature model expressed valuable information for identifying
both variable services and the boundary of component reuse, which supported adop-
tion of future service evolutions. Similarly, workflow analysis helped us to under-
stand what processes should be mandatory or optional.

6.3 Broad Coverage of a Feature Model for System Analysis

In our experience, the feature model successfully provided guidelines for analyzing
the target system in a broad way, from architectural issues to component refactoring.

168 K.C. Kang et al.

This is because a feature model represents the domain of the target system hierarchi-
cally. In other words, features of higher level (near to the root of a feature tree) are
related to system assets of a large scale such as an architecture or layers. In contrast,
features at leaf nodes are mostly related to small objects of a system. Therefore, once
a feature model is built carefully, the model can be used for analyzing a system in
various levels of abstraction; the model can provide abstract views on the system
domain as well as detailed views on relationships among concrete system entities.

7 Conclusion and Future Work

In this paper, we described our experience of re-engineering CAS for enhanced main-
tainability and reusability of components. Through the proactive re-engineering task
based on the feature model, we could achieve this goal and the result was transferred
to the company successfully. We believe that this case study can serve to promote the
significance of proactive re-engineering based on a feature model, which can alleviate
difficulties of system maintenance and reduce overall maintenance costs. As a future
work, we will investigate systematic methods for validating re-engineering process,
i.e., to show that re-engineered systems behave “equivalently” to the original systems.

References

1. J.Bergey, L.O’Brien, and D.Smith. Option Analysis for Re-engineering (OAR): A Method
for Mining Legacy Assets (CMU/SEI-2001-TN-013). Pittsburgh, PA:Software Engineer-
ing Institute, Carnegie Mellon University (2001)

2. M.Kim, J.Lee, K.C.Kang, Y.Hong, and S.Bang. Re-engineering Software Architecture of
Home Service Robots: A Case Study, International Conference on Software Engineering,
Missouri, USA, pp.505-513 (2005)

3. K.C.Kang, M.Kim, J.Lee, and B.Kim. Feature-oriented Re-engineering of Legacy Systems
into Product Line Assets, The 9th International Software Product Line Conference, Rennes,
France, pp. 45 – 56 (2005)

4. C.Ghezzi, M.Jazayeri, D.Mandrioli. Fundamentals of Software Engineering 2nd ed., Pren-
tice-Hall (2004)

5. B.Magdalena, M.Ettore, D.Michel, L.Bruno and K.Kostas. Measuring Clone Based Reengi-
neering Opportunities, Sixth International Software Metrics Symposium (METRICS'99),
p. 292 (1999)

6. D.E. Baburin et al. Visualization Facilities in Program Re-engineering, Programming and
Computer Software Vol 27 No. 2, pp. 69-77 (2001)

7. G. Snelting and F. Tip. Re-engineering Class Hierarchies Using Concept Analysis, Proc.
Foundations of Software Eng., pp. 99-110 (1998)

8. D. Holinsworth. The Workflow Reference Model, Workflow Management Coalition,
TC00-1003, 1995

9. N.Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede and D.Edmon. Workflow Resource
Patterns: Identification, Representation and Tool Support, In the proceeding of the 17th
Conference on Advanced Information System Engineering (CAiSE'05), Porto, Portugal,
2005

10. G. Baster, P. Konana, and J. E. Scott. Business Components: A Case Study of Bankers
Trust Australia Limited, Communication of the ACM, Vol.44, No.5, 2001

 Re-engineering a Credit Card Authorization System 169

11. C. J. Neill and B. Gill. Refactoring Reusable Business Components, IEEE Computer Soci-
ety, 1520-9202/03, 2003

12. LG Card Co. Ltd homepage http://www.lgcard.com
13. D.D’sousz and A.Willi. Object, Components, and Frameworks with UML: The Catalysis

Approach, Addison-Wesley (1998)
14. 14 K.C.Kang. Issues in Component-Based Software Engineering, Proceeding of the 21st

International Conference Software Engineering (1999)
15. N.Boertien, M.Steen and H.Jonkers. Evaluation of Component-Based Development Meth-

ods, International Workshop on Evaluation of Modeling Methods in Systems Analysis and
Design (2001)

16. S.A.Bohner. Extending Software Change Effect Analysis into COTS Components, Pro-
ceedings of the 27th Annual NASA Goddard/IEEE Software Engineering Workshop
(2003)

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 170 – 183, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Odyssey-CCS: A Change Control System
Tailored to Software Reuse

Luiz Gustavo Lopes, Leonardo Murta, and Cláudia Werner

COPPE/UFRJ – Systems Engineering and Computer Science Program
Federal University of Rio de Janeiro – P.O. Box 68511

21945-970 Rio de Janeiro, Brazil
{luizgus, murta, werner}@cos.ufrj.br

Abstract. Software is constantly changing and these changes may occur at
anytime in the software lifecycle. In order to avoid rework and information loss,
among other problems, these changes must be controlled in a proper way. When
changes affect reused components, possibly composed by other components, it
is important to know who is responsible for implementing them. Some
consequences of this problem, named Reuse Chain of Responsibility, is the
misconception on rights and duties of teams that produce and reuse compo-
nents. Aiming to solve this problem, we introduce Odyssey-CCS, a flexible
change control system that allows the customization of a change control process
to the specific needs of software reuse. Moreover, it keeps a reuse map that
holds information about contracts between components producers and reusers.
The reuse map is integrated to an existing component library and is queried by
Odyssey-CCS within the impact analysis activity.

1 Introduction

Software is constantly changing, and these changes may occur at anytime in the
software lifecycle. In order to avoid rework and information loss, among other
problems, changes must be controlled in a proper way. Software Configuration
Management (SCM), which is a discipline for controlling evolution of large and
complex systems [11], is a critical element in the software maintenance process [13]
and can be used to attenuate this problem. SCM is composed by a variety of systems.
One of these systems, the Change Control System (CCS), supports the lifecycle of
change requests, collecting, storing, and propagating related information.

Many successful software reuse projects apply some kind of SCM system [20].
However, the current CCSs are not properly designed to deal with specific idiosyn-
crasies of reuse-driven paradigms, such as Component-based Software Engineering
(CBSE), which construct systems by reusing existing components [5]. The main
drawbacks are related to the lack of information necessary for software maintenance,
such as producers and consumers of a given component, together with the contracts
established between them. Moreover, the current change control processes (CCPs) are
not flexible enough to support scenarios where the change responsibility may be
propagated to other development teams.

 Odyssey-CCS: A Change Control System Tailored to Software Reuse 171

It is difficult to know who is responsible for maintaining a given component in
scenarios where components are composed by other components and developed by
different teams. This problem can be attenuated if producers and consumers are
identified, together with the contract that determines their rights and duties, and a
change process tailored to CBSE is controlled in a proper way. This paper introduces
an approach, named Odyssey-CCS, which allows CCP and template modeling for the
specific needs of CBSE. These processes are bound together with templates and
enacted by Odyssey-CCS via Web. Moreover, Odyssey-CCS keeps a reuse map that
can be queried by specific activities of the CCP to detect the person/team who is
responsible for maintaining each component.

It is important to notice that the focus of our paper is on the maintenance of
components that are already stored in an existing controlled library. The search and
retrieval of components available on the web [4], and discussions about existing
library solutions [19] are out of the scope of this paper.

This paper is organized in six sections, including this introduction. Section 2
presents some background concepts of SCM and CBSE, together with the main
challenges of applying CCS in the context of CBSE. Section 3 introduces the
proposed approach to attenuate the discussed problems. Section 4 details a prototype
constructed to automate the proposed approach. Section 5 describes the related work.
Finally, some contributions and future work are presented in Section 6.

2 Background and Existing Challenges

SCM can be organized under two main perspectives depending on the role in the
software development process. From the managers’ perspective, SCM is composed by
four main functions [14, 15]: configuration identification, configuration control, status
accounting, and configuration audits and reviews. However, from the developers’
perspective, SCM is composed by three main systems: CCS, version control system,
and build and release control system.

This work is contextualized in the configuration control and status accounting
functions when analyzed from the managers’ perspective, and in CCS when analyzed
from the developers’ perspective. In the following, we present the main features of
CCSs, the CBSE paradigm, and the existing challenges of using these systems to
control the evolution of software developed according to the CBSE paradigm.

2.1 Change Control System

In the beginning, CCSs were mainly focused on corrective changes [25]. However,
nowadays they are applied to any kind of change, including the ones regarding
prevention, adaptation, and enhancement. In some cases, when the software
development process emphasizes early releases, a CCS is used from the beginning of
the project, acting as a process machine and being named request control system. Due
to the success of process-based CCS, SCM has been recognized as one of the fields of
software engineering in which process support has proven to be most successful [8].

One of the most known open-source CCS is Bugzilla [3]. It provides support for
CCP execution, detailed queries over reported changes, establishment of links among

172 L.G. Lopes, L. Murta, and C. Werner

changes, change state control, traceability among logical changes and affected
artifacts, event notification, and textual and graphical reports regarding the status of
the changes. Moreover, to achieve high performance they make use of a relational
database and HTML interfaces. There are many other systems similar to Bugzilla [7].
We can cite Mantis [18], which allows information request configuration, and
ClearQuest [30], a commercial system from IBM Rational which is one of the most
flexible CCSs in terms of CCP and template customization. However, all these
systems are focused on controlling changes over conventional systems. They are not
prepared to deal with specific idiosyncrasies of the CBSE paradigm.

2.2 Component-Based Software Engineering

CBSE is a discipline of software development and maintenance that focus on reusing
well defined components, produced via an independent process [5]. CBSE uses
components, interfaces and connectors as first-class entities to structure software
systems. Components, which are reusable software parts [9], make use of interfaces,
described in a contractual manner, to interact with the remaining software elements
[28]. Connectors are responsible for performing the binding among components.

When CBSE is in place, the software development teams can be classified by their
roles in the process. Some teams are in charge of developing components. These
teams, named producers, produce reusable components that serve to others. Other
teams, named consumers, are in charge of developing systems by reusing existing
components. Finally, there are some hybrid teams, which act as both producers and
consumers. They reuse existing components to produce more other components.

The CBSE process is currently supported by a variety of methods. The most well
known and adopted are Catalysis [9], UML Components [6], and KobrA [1].
However, besides the existence of these methods, the need for stable processes,
standards, and supporting tools is still evident. For instance, when components are
reused, they may evolve in parallel to their original version. SCM systems are
responsible for keeping the traceability among original and reused versions of
components, notifying producers and consumers when necessary [1].

Both SCM and CBSE aim to increase productivity and software quality, and to
decrease the overall software cost [16]. However, they must be adopted in a consistent
and integrated way to reach these goals.

2.3 Existing Challenges

The consumer team may detect that some reused component, made by other teams,
needs maintenance when a client requests a change that affects this component. At
this moment, the consumer team is supposed to choose the appropriate action: (1) ask
the producer team to maintain the component, (2) maintain the component them-
selves, or (3) acquire a new component from another producer team to replace the
existing one. Some information, such as the producer team profile and reuse contract
are vital to support this decision. A correct and well supported decision at this point
can avoid judicial trials in the future.

In cases where the reuse contract guarantees that the producer team is responsible
for the component maintenance, the consumer team requests a change to the producer

 Odyssey-CCS: A Change Control System Tailored to Software Reuse 173

team, asking for the component maintenance. The original change request will only
be resumed after the producer team releases a new component version.

In some cases, the component under maintenance is also composed by other
components, made by other producer teams, and the required maintenance may affect
one of these components. In this case, the producer team acts as a consumer team, and
the previous situation is repeated, recursively. This delegation scenario is repeated
until the change request reaches the real responsible for the maintenance. When it
occurs, the change request must be ranked in terms of how important it is to the other
component consumers. For instance, almost all consumers can benefit from a bug fix.
However, some enhancements may be important to just a few consumers.

After implementing and releasing a new component version, all consumers of that
component should be notified, according to the status accounting function [14, 15].
This new component version may be provided free of charge or not, depending on the
existing reuse contract clauses. If the released component version is part of other
components, these components should also be released and their consumers notified.
All in all, components may be composed by other components, recursively. For this
reason, the list of consumers of a specific component may become complex,
demanding support to responsibility detection and information propagation.

Another important aspect is related to legal issues regarding component
maintenance. The producer should be aware of the details of the contracts established
with each consumer. This knowledge is important to decide under which conditions
the component is to be maintained. On the other hand, the consumer should also know
all contracts established when the components were reused, to claim their rights.

Therefore, it is important to keep traceability links among components and their
respective producers and consumers. For instance, it is important to know the
producer’s and the consumers’ profiles, together with contractual information, for
each component release available for reuse. The current CCSs do not take into
account this problem, named in this paper as the reuse chain of responsibility.

Another challenge is regarding CCPs. Currently, there are some international
standards [14, 15] that define CCPs for conventional software development. However,
they do not deal with the CBSE issues discussed in this section. In conventional
software development scenarios, these international standards are used as guidance.
The CCP itself is adapted to the specific needs of the organization [29]. In the case of
CBSE, the customization of the CCP is even more important due to the immaturity of
the existing processes and the focus of existing standards on conventional CCP.

Moreover, CBSE scenarios demand for the gathering of some information that is
neglected in conventional development. This information, related to component
producers and consumers, contracts, and dependencies among components, is not a
consensus in the CBSE community. Due to that, CCSs that support CBSE must allow
the customization of templates for change request, impact analysis, evaluation, etc.

Some conventional CCSs allow the customization of CCPs and information
gathering templates, such as IBM Rational ClearQuest [30] and JIRA [2]. However,
they are usually focused on state machines, not allowing the modeling of products
produced by SCM activities and multilevel sub-activities. These features are
important even for conventional software development, and become essential when
the CCP gets more complex, as in CBSE scenarios.

174 L.G. Lopes, L. Murta, and C. Werner

3 Odyssey-CCS

Considering the existing challenges to control changes over software developed using
CBSE techniques, as discussed in Section 2.3, we introduce a change control
approach tailored to this paradigm. Our approach, named Odyssey-CCS, is able to
keep information regarding component reuse and make it available to producer and
consumer teams when necessary. Moreover, our approach is flexible, allowing CCP
and information template customization to the specific needs of different projects.

Fig. 1 presents an overview of our approach, depicting its main activities and
components that support the activities (under the respective activity). In the following,
we detail each of these activities.

Reuse Map

Charon

Process
Modeling Template

Modeling

Process
Deployment

Process
Enactment

Template
Modeler

Process
Deployer

SPEM
Modeler

XMI

Templates

Configured
Process

Odyssey-CCS Component

Activity

External Component

Legend:

Process
Manager

Information

Build and Release
Control System

Component
Library

Fig. 1. Overview of Odyssey-CCS approach

3.1 Process Modeling

One of the challenges presented in Section 2.3 regards customization of CCPs to
CBSE. As mentioned before, some commercial CCSs provide such support, but just a
few provide graphical resources to support it. For this reason, the proposed approach
provides a specific activity for CCP modeling.

The main goal of this activity is to model CCP using a standardized notation for
software process modeling, which can be understood by many people and tools.
Moreover, it is important to have some graphical support during process modeling to
facilitate comprehension and the modeling itself. This graphical support avoids the
necessity of source-code changes or complex XML files, found in other CCS
approaches. It is also important to export the modeled process in a standard format.

This activity is supported by a process modeling component named SPEM
Modeler. This component allows graphical process modeling according to the SPEM
(Software Process Engineering Metamodel) notation [23], defined by OMG.

SPEM is a notation specifically designed for software process modeling and based
on a standard meta-model, called MOF (Meta-Object Facility) [22]. The SPEM
notation inherits some diagrams from the UML notation. For instance, the process

 Odyssey-CCS: A Change Control System Tailored to Software Reuse 175

workflow is modeled using an activity diagram and the relationship among process
roles and process activities is modeled using a use case diagram. Since UML is a well
known modeling language in the software engineering domain, it is expected that
software engineers will comprehend the SPEM notation without difficulty.

The SPEM Modeler allows modeled processes to be exported according to the
XMI (XML Metadata Interchange) specification [24]. This specification defines how
MOF-based meta-models should be exported in XML format. Thus, other SPEM
compliant systems are able to open the exported file.

3.2 Template Modeling

According to Section 2.3, in the same way, it is not possible to use a unique process
for change control in the CBSE context, and it is not possible to gather a unique set of
information independently of the process. For this reason, our approach proposes a
specific activity for information template modeling. This activity allows the definition
of which information should be collected in each CCP activity. This template
modeling activity is supposed to be simple and graphical, avoiding the necessity of
changes on the CCS source-code, as required by some existing systems.

A template is composed by a list of fields. Each field belongs to a specific field
type, such as label, text-field, text-area, combo-box, check-box, file upload, link, etc.
Moreover, each template may be bound to products produced by the CCP activities.
When an activity is finished during process enactment, the templates associated to its
produced products are presented to be filled in. The documents produced by the
templates are attached to the change in progress and can be queried at anytime.

This template modeling activity is supported by the Template Modeler component.
This component is a template composer infrastructure that allows graphical definition
and on-the-fly visualization of the templates being created. In other words, this
component supports the creation of user interfaces that are able to gather different
types of information, according to the needs of the CCP for CBSE.

3.3 Process Deployment

Once the process is modeled, it should be deployed to be enacted. The process
deployment activity is composed by the following four sub-activities, supported by
the Process Deployer component: process importation, assignment of users to roles,
assignment of templates to products, and notification configuration.

The process being imported should follow the SPEM notation and can be modeled
by the Process Modeler component or any other tool compliant to the SPEM
specification. An XMI file containing the process definition should be imported for
each CBSE project controlled by Odyssey-CCS. This flexibility allows the
assignment of different processes to distinct projects.

The imported processes are verified prior to enactment. This verification simulates
the process enactment, searching for modeling mistakes that makes it impossible to
start the real enactment. The next sub-activities are only available to the processes
that succeed in this verification.

The assignment of users to roles consists in defining the users who are responsible
for performing the existing roles. Each process activity has a set of associated roles.

176 L.G. Lopes, L. Murta, and C. Werner

Transitively, the assignment of users to roles indirectly defines which user is
authorized to perform each process activity. This information is vital during process
enactment, to identify authorized users to perform a given activity and users that
should be notified after the execution of a given activity.

The assignment of templates to products consists in defining which templates will
be presented to the user after the execution of a given activity. When an activity
finishes, the products produced by this activity should be materialized by filling in the
associated templates. For example, the impact analysis activity produces a product
named impact report. This product is generated by an impact report template
previously modeled as described in Section 3.2.

The last configuration regards notification sending. Some process activities
demand notifying users after their execution. This feature is provided by a built-in
template that can be associated to any product. This special template needs some
information, such as the target e-mail addresses, the subject, and the message itself.
For example, an e-mail product, associated to this built-in template, can be produced
by the change request evaluation activity to notify the results to the user.

3.4 Process Enactment

The process enactment activity requires a workflow engine to control the process
execution. This activity is supported by the Process Manager, Charon, and Reuse
Map components. The Process Manager component is responsible for selecting the
appropriate templates of each finished process activity, presenting the respective
forms to be filled in by the users, and storing the documents produced by the forms.

The Process Manager component interacts with the Charon component, which is
responsible for the enactment itself. The Charon component is a Prolog-based
workflow engine compliant with the SPEM specification. It automatically loads the
XMI file into a knowledge base, transforming SPEM elements into Prolog facts.
Moreover, it makes use of intelligent agents to access the knowledge base and enact
the process. The Charon component is able to detect pending activities and infer the
next activities when an activity is finished.

As discussed in section 2.3, some process activities, such as impact analysis, need
special support when CBSE is in place. In this scenario, it is important to provide
information about producers and consumers of components, and the contract that
define the rights and duties of both parts to detect the one responsible for
maintenance. This information is stored by a Reuse Map component.

The Reuse Map component holds the profile of each team associated to the
versions of components they produce or use. It is integrated to a component library.
Aiming to facilitate the contract establishment among producers and consumers, a
set of reuse licenses is made available to producers. These licenses, which describe
in details reuse terms, are assigned by the producers to new components when they
are added to the component library. At this moment, the producers define under
which conditions the new components can be reused. These licenses are presented to
consumers during component reuse and they can choose one of them to establish
the reuse contract. The conceptual model of the Reuse Map component is shown in
Fig. 2.

 Odyssey-CCS: A Change Control System Tailored to Software Reuse 177

Fig. 2. Conceptual model of the reuse map

The information stored by the Reuse Map component allows producers and
consumers to detect the real responsible for implementing a given change over a
specific component. Moreover, it helps identifying other consumers that also reuse the
component and are eligible for receiving a new version.

4 Prototype

Based on the approach described in Section 3, a prototype was implemented. This
prototype is composed by a process modeling tool, available as a plug-in of the
Odyssey environment1, a template modeling tool, and a flexible CCS.

Fig. 3. SPEM-based process modeler

1 URL: http://reuse.cos.ufrj.br/odyssey

178 L.G. Lopes, L. Murta, and C. Werner

The process modeler tool is based on the SPEM notation and allows graphical
process modeling according to the SPEM specification suggested icons. It reuses the
diagramming infrastructure of the Odyssey environment. Fig. 3 presents the SPEM
Modeler in action. On the left hand side, there is a tree containing the SPEM process
elements. On the right hand side, a CCP workflow is being modeled. For instance, the
process being modeled is an adaptation of an existing CCP [14, 15] to the CBSE
needs. Any process in the left hand side of Fig. 3 can be exported according to the
XMI standard.

The CCP may be modeled considering activities performed in the software
development process. For instance, after evaluating a change request, it may be
decided to implement a software modification, or to replace the affected component,
among other decisions, which are activities described in the development process.
However, depending on the modeled CCP after the execution of these activities some
information may be requested. For instance, the developer may be prompted to inform
the time spent to perform the modification, the difficulties and problems found, the
adopted solution, or any other information considered important for change control.

Both the template modeling tool and the CCS are Web-based applications. Fig. 4.a
presents a change request template being modeled. This tool allows the inclusion of
new fields and a fast preview of the whole template. Fig. 4.b shows a text area field
that gathers change description information being configured.

Fig. 4. Template modeling (a) and the configuration of a text area field (b)

At this moment, a new project can be created in Odyssey-CCS. The project
creation activity is composed by the following steps: (1) an XMI file containing the
modeled process is imported into Odyssey-CCS; (2) Odyssey-CCS users are
associated to process roles, defined in the XMI file; (3) the modeled templates are
associated to the products produced by process activities, defined in the XMI file. For

(a)

(b)

 Odyssey-CCS: A Change Control System Tailored to Software Reuse 179

instance, the change request template, shown in Fig. 4.a can be associated to the
change request product, modeled in the process shown in Fig. 3; and (4) the
notifications are configured to be automatically sent during the process enactment.

The process is ready to be enacted after this configuration phase. This task is
performed by the Charon tool, which was originally designed to enact UML-based
activity diagrams, and was evolved to be compliant to the SPEM specification. When
a user logs in the Odyssey-CCS system, he is informed about his pending activities
and decisions, as shown in Fig. 5.a.

When an activity is finished, the Process Manager presents the forms associated to
its products to the user. For instance, Fig. 5.b shows a change request form being
filled in during process enactment. The change request form is generated by Odyssey-
CCS according to the change request template modeled in Fig. 4.a.

Fig. 5. Pending activities and decisions for a specific user (a) and template being filled in
during process enactment (b)

The producer and consumer teams can access the reuse map during process
enactment. Some common queries are “Who is the producer of component C?”,
“What are the components that compose component C?”, “Which consumer teams
reuse component C?”, and “What are the contract conditions when component C is
reused by team T?”. These queries, when combined together and used in a recursive
way, can support detecting the real responsible for a specific change. Fig. 6 shows, at
the left hand side, the Analysis Technical Report form, which has a link to the Reuse
Map. In the Reuse Map, the user can list the registered components and visualize their
consumers. At the right hand side of the figure, the consumers of the Parser
component are shown.

(a)

(b)

180 L.G. Lopes, L. Murta, and C. Werner

Fig. 6. Consumers View of the Reuse Map

5 Related Work

Currently, there is a lack of research on CCS applied to the CBSE paradigm. However,
there are some few works on the boundary of this topic. Kwon et al. [16] defined the
MwR (Maintenance with Reuse) process model. This process model uses software
reuse to support software maintenance. It is implemented by a tool named TERRA,
which provides the following activities: component recording and searching, change
request recording, reuse report recording, and change approval recording. The process
that guides the execution of these activities is hard-coded, and the tool has some pre-
defined forms, also hard-coded, to collect and store information during the execution.

Moreover, MwR does not allow the identification of component versions and
consumer teams during component recording. This information is necessary to define
how the inner architecture of a given component (dependencies to other components)
evolved overtime and which consumer reuses a specific component version. As
discussed before, it is not possible to detect the real responsible for a change without
such information. These problems were solved by our approach via a flexible
mechanism for process and template definition, together with the reuse map.

Another important work involving maintenance of component-based systems is
KobrA [1]. KobrA is an approach for product line that defines procedures for product
line evolution and product generation from a product line. These procedures make use
of change sets [27] to propagate changes among components. KobrA approach also
keeps a cause relationship among changes. This cause relationship can be used to
understand the effects of a given change.

 Odyssey-CCS: A Change Control System Tailored to Software Reuse 181

Besides the effective support for component composition and change dependencies,
KobrA approach does not support the responsibility detection dimension of the change
control. It does not use producers and consumers information, together with the
component composition information, to propagate a change request to other teams.
Such feature can be found in our approach. Moreover, we could not find any
computational tool that supports the KobrA approach.

Flashline Registry [12], Logidex [17] and Select Component Manager [26] are
commercial component managers that maintain the reusable components information
of an organization. This includes component consumption information and
component interdependencies, assisting the resolution of the Reuse Chain of
Responsibility problem, but with some limitations. They seem to consider that each
component is reused under the same license type by all consumers. Nevertheless,
some components may be available under more than one license type, which requires
an association between a consumer and its selected license. In addition, they
apparently do not list the components consumers to their producers, which is a
valuable information when analyzing and evaluating change requests.

6 Conclusion

We presented in this paper an approach for change control tailored for CBSE. The
main contributions of our work are:

• The identification of the main challenges on change control when the CBSE
paradigm is being used;

• The identification of the current CCSs drawbacks regarding the identified
challenges;

• The definition of an approach for change control focused on the specific problems
of software reuse; and

• An implemented prototype deployed at http://reuse.cos.ufrj.br/Odyssey-CCS,
integrated to an existing component library available at http://reuse.cos.ufrj.br/
brecho.

Our approach can be extended in the future to provide new functionalities, such as
advanced queries summarizing the information gathered during process enactment.
For instance, these queries could return high-level management charts showing how
the gathered information evolved overtime, the average execution time of a given
process activity, the average number of finished changes in a period of time, etc.

Our approach has also been useful for other projects. It has been integrated to a
version control system (VCS) for UML models [21], which accesses some
information from Odyssey-CCS, such as which process instances are in execution.
This information is presented to the VCS users, who select the CCP instance in which
they are working on. Thereafter, when they perform check in operations, the changed
artifacts are associated to the selected process instance, composing change packages.
Therefore, it is possible to know which artifacts were changed in each process
instance context.

The Odyssey-CCS has also been used by the Odyssey-WI approach [10] to help
contextualize traceability links among UML model elements with information

182 L.G. Lopes, L. Murta, and C. Werner

gathered through CCP enactment. Odyssey-WI aims to answer the question: “When a
given element is modified, which other elements are also usually modified?”. Besides
pointing the modified elements, Odyssey-WI presents who, when, where, what, why
and how the modifications were done. Most of this information is found in Odyssey-
CCS repository and can be accessed through an API, which is used by Odyssey-WI.

Although the technical indication that our approach can aid on controlling changes
in the context of CBSE, we still need to perform some evaluation to quantify how
useful is our approach in the software reuse scenario. Currently, we are designing this
evaluation to be performed at the Brazilian Central Bank.

Acknowledgment

The authors would like to thank CAPES, CNPq, and the Brazilian Central Bank for
the financial support.

References

1. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D.,
Peach, B., Wust, J., and Zettel, J.: Component-Based Product Line Engineering with
UML. Addison-Wesley (2001)

2. Atlassian: JIRA - Bug tracking, issue tracking and project management software. In:
http://www.atlassian.com/software/jira/docs/latest/, accessed in: 01/Feb/2006

3. Barnson, M.P, and Steenhagen, J.: The Bugzilla Guide - 2.17.5 Development Release. The
Bugzilla Team (2003)

4. Braga, R. M. M., Werner, C. M. L., and Mattoso, M.: Odyssey-Search: A multi-agent
system for component information search and retrieval. Journal of Systems and Software,
Vol. 79, no. 2 (2006) 204-215

5. Brown, A. W.: Large Scale Component Based Development. Prentice Hall PTR (2000)
6. Cheesman, J. and Daniels, J.: UML Components: A Simple Process for Specifying

Component-Based Software. Addison-Wesley (2000)
7. CMCrossroads: Defect Tracking Software. In: http://resources.cmcrossroads.com/

cmcrossroads/search/browse/1715/1715.jsp, accessed in: 01/Feb/2006
8. Conradi, R., Fuggetta, A., and Jaccheri, M. L.: Six Theses on Software Process Research.

European Workshop on Software Process Technology (EWSPT), Weybridge, UK, (1998)
100-104

9. D'Souza, D. and Wills, A.: Objects, components, and frameworks with UML: The
catalysis approach. Addison Wesley (1998)

10. Dantas, C. R., Murta, L. G. P., and Werner, C. M. L.: Consistent Evolution of UML
Models by Automatic Detection of Change Traces. International Workshop on Principles
of Software Evolution (IWPSE), Lisbon, Portugal, September (2005) 144-147

11. Estublier, J., Leblang, D., Clemm, G., Conradi, R., Tichy, W., van der Hoek, A., and
Wiborg-Weber, D.: Impact of the research community on the field of software
configuration management: summary of an impact project report. ACM SIGSOFT
Software Engineering Notes, Vol. 27, no. 5, September (2002) 31-39

12. Flashline: Flashline Registry. In: http://www.flashline.com, accessed in: 28/Mar/2006
13. IEEE: Std 1219 - IEEE Standard for Software Maintenance. Institute of Electrical and

Electronics Engineers (1998)

 Odyssey-CCS: A Change Control System Tailored to Software Reuse 183

14. IEEE: Std 828 - IEEE Standard for Software Configuration Management Plans. Institute of
Electrical and Electronics Engineers (2005)

15. ISO: ISO 10007, Quality Management - Guidelines for Configuration Management.
International Organization for Standardization (1995)

16. Kwon, O., Shin, G., Boldyreff, C., and Munro, M.: Maintenance with Reuse: An
Integrated Approach Based on Software Configuration Management. Asia Pacific
Software Engineering Conference, Takamatsu, Japan, December (1999) 507-515

17. LogicLibrary: Logidex. In: http://www.logiclibrary.com, accessed in: 28/Mar/2006
18. Mantis: Mantis Bug Tracker. In: http://www.mantisbt.org, accessed in: 28/Mar/2005
19. Mili, A., Mili, R., and Mittermeir, R. T.: A survey of software reuse libraries. Annals of

Software Engineering, Vol. 5, no. 0 (1998) 349 - 414
20. Morisio, M., Ezran, M., and Tully, C.: Success and Failure Factors in Software Reuse.

IEEE Transactions of Software Engineering, Vol. 28, no. 4 (2002) 340-357
21. Oliveira, H. L. R., Murta, L. G. P., and Werner, C. M. L.: Odyssey-VCS: a Flexible

Version Control System for UML Model Elements. International Workshop on Software
Configuration Management, Lisbon, Portugal, September (2005) 1-16

22. OMG: Meta Object Facility (MOF) Specification, version 1.4. Object Management Group.
In: http://www.omg.org/technology/documents/formal/mof.htm, accessed in: 01/Feb/2006

23. OMG: Software Process Engineering Metamodel (SPEM), Version 1.1. Object
Management Group. In: http://www.omg.org/technology/documents/formal/spem.htm,
accessed in: 01/Feb/2006

24. OMG: XML Metadata Interchange (XMI) Specification, Version 2.1. Object Management
Group. In: http://www.omg.org/technology/documents/formal/xmi.htm, accessed in:
01/Feb/2006

25. Pressman, R. S.: Software Engineering: A Practitioner's Approach. 6th. edn. McGraw-Hill
(2005)

26. Select Business Solutions: Select Component Manager. In: http://www.selectbs.com,
accessed in: 28/03/2006

27. Smds: Aide de Camp Product Overview. Software Maintenance & Development Systems
(1994)

28. Szyperski, C.: Component Software: Beyond object-oriented programming. Addison-
Wesley (2002)

29. Weber, D. W.: Requirements for an SCM Architecture to Enable Component-Based
Development. Proceedings of Tenth International Workshop on Software Configuration
Management (SCM 10), Toronto, Canada, May (2001)

30. White, B. A.: Software Configuration Management Strategies and Rational ClearCase: A
Practical Introduction. Addison-Wesley (2000)

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 184 – 202, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Case Study of a Method for Reengineering Procedural
Systems into OO Systems

William B. Frakes, Gregory Kulczycki, and Charu Saxena

Computer Science Department, Virginia Tech, Falls Church, VA USA
frakes@cs.vt.edu, gregorywk@vt.edu

Abstract. This study evaluates a method for reengineering a procedural system
to an object-oriented system. Relationships between functions in the procedural
system were identified using various coupling metrics. While the coupling met-
rics used for analysis were helpful in identifying candidate objects, domain ex-
pert analysis of the candidate objects was required. The time taken at each step
in the process was captured to help determine the effectiveness of the method.
Overall the process was found to be effective for identifying objects.

1 Introduction

Many companies have large inventories of legacy code written in procedural lan-
guages. When these companies migrate to new object-oriented architectures, they do
not want to start from scratch if it can be avoided. Therefore, a need exists for a meth-
odology that can analyze existing procedural code and identify related functions and
data that can be encapsulated into reusable objects in the application domain.

This case study extends the Pole method described in [1] with new metrics and
uses it to identify potential reusable objects in the ccount metrics tool [3], which is
written in C.

The steps in the method are described briefly along with the required metrics. The
process and time taken for each step was captured and reported, and the data collected
was used to determine the overall effectiveness of the method. The goal of this proc-
ess is to identify reusable objects in the application domain. Once the code has been
reengineered using these objects, traditional refactoring methods can be applied to
further refine these objects and strengthen the design of the object-oriented code.

2 Reengineering Methodology

The method evaluated in this study proposes steps to be taken in reengineering a pro-
cedural system to an object-oriented system. The method delivers reusable objects
from existing legacy code. It is based on the premise that program elements that ex-
hibit certain kinds of coupling can be grouped together to form objects. The steps to
be taken in the reengineering process are as follows:

1. The domain expert creates a function stop list. A stop list contains func-
tions identified by the domain expert as utility functions that do not perform
tasks specific to the domain.

 Case Study of a Method for Reengineering Procedural Systems into OO Systems 185

2. A call graph is generated. A tool or manual scanning of the code base is
used to generate a call graph that shows the flow of control in the legacy
code.

3. Dependency and context lists are created. A dependency list identifies all
the functions invoked from a given function. A context list does the re-
verse—it identifies the functions that invoke or use a given function.

4. Objects are identified. In this step the metrics are calculated and the poten-
tial objects are identified. This step turned out to be the most involved step in
the process. For clarity, we break its description into three sub-steps.

(a) Summary data is collected. The summary data contains informa-
tion for each function that is not in the stop list, such as the types
and names of parameters, variables, and functions used in the given
function.

(b) Metrics are calculated. Different coupling metrics describe differ-
ent relationships between functions, such as how many times one
function invokes another or how many parameters are shared by the
functions. In this study we used eight different coupling metrics and
evaluated each one individually for its effectiveness in identifying
objects.

(c) Candidate objects are identified. The software engineer deter-
mines a threshold for each metric. If the metric for two functions is
above the threshold, those functions are candidates to appear as
methods in the same class.

5. Domain expert chooses objects. The domain expert examines candidate ob-
jects and determines whether they are reasonable. Variables common to two
or more functions are examined for their appropriateness as object attributes.
Leftover functions including the functions in the stop list can be converted
into individual objects or packaged as utility objects.

Throughout the process of evaluating the proposed method, the following metrics
were captured:

• The time taken at each step of the process.
• The number of domain specific objects and utility objects created.
• The number of functions and lines of codes in the legacy system.

3 Coupling Metrics

This section describes the metrics that we used in our methodology. Each metric de-
scribes a distinct relationship between any two functions in the legacy system. We
call them coupling metrics because they are based on the various forms of module
coupling, such as those given in [3], and because they indicate the dependency and
the amount of communication that takes place between functions.

186 W.B. Frakes, G. Kulczycki, and C. Saxena

The metrics can be divided into three broad categories based on the kind of cou-
pling that motivated them.

1. Invocation metrics. These metrics are based on routine call coupling as de-
scribed in [6, p. 306]. They rank functions based on how often one function
invokes another.

2. Shared parameter metrics. This category currently contains only one met-
ric—the shared parameter metric. It is based on data element coupling as de-
scribed in [3], which exists when data is passed from one function to another
through a disciplined interface such as a parameter list.

3. Shared variable metrics. These metrics are based on data definition cou-
pling as defined in [3]. Data definition coupling occurs when functions ma-
nipulate data of the same type.

Our goal is to use these metrics to determine if any two functions in the legacy sys-
tem belong together in the same class when we move to an object-oriented system.
We looked at many metrics because we did not know which ones would be the most
effective in identifying objects. We discuss the effectiveness of the metrics we used
and the prospect of finding additional metrics in Section 6 of this paper.

Table 1. Functions used in the definitions of the eight coupling metrics

Function Definition

invocs(f1, f2) Number of times that function f2 is invoked in the body of f1

params(f0)
{ vt,n | vt,n is a variable of type t with name n that appears in the

 parameter list of f0 }

vars(f0)
{ vt,n | variable vt,n of type t with name n appears in the body of

f0 }

source(v, f0) { vdec | variable v appears in f0 and
 vdec is a declaration of variable v, or
 v is a formal parameter in f0, and vdec ∈ source(v1, f1) where
 f1 invokes f0, and vdec is the actual parameter in that
 invocation that corresponds to v }

count(v, f0) Number of times that variable v appears in the body of f0

The following subsections present eight different metrics—three invocation met-
rics, one shared parameter metric, and four shared variable metrics. Table 1 gives the
definitions of several functions that are used in the definitions of these metrics. With
the exception of the source function, these helper functions are self-explanatory. The

 Case Study of a Method for Reengineering Procedural Systems into OO Systems 187

source function gives the set of variable declarations associated with a particular
variable, tracing back through calls if the variable is a formal parameter. We discuss
the source function in further detail when we look at the shared variable metric.

3.1 Invocation Metrics

When a function f1 calls another function f2, it indicates that they perform related
tasks and suggests that those functions should be considered for inclusion in the same
object. When a method from one class invokes a method from another class, those
classes are related by routine call coupling [6]. As the name implies, this form of cou-
pling is routine in object-oriented programs. Nevertheless, when a function f1 calls
another function f2 in a procedural program, it may indicate that f2 can translate to a
private method in same class that contains f1. Therefore, these metrics may be consid-
ered helpful in identifying objects.

Direct invocation metric. This metric identifies the number of times that a function
f1 calls another function f2. The metric is defined simply as

N(f1, f2) = invocs(f1, f2).

Indirect invocation metric. This metric identifies the number of times that a function
f1 indirectly calls a function f2 by way of a third function fmid. It is simply the sum of
the direct invocation metrics for f1 and fmid, and fmid and f2. However, if either of the
direct invocation metrics is zero, then no indirect invocation takes place, so the value
of the indirect invocation metric is zero. The metric is defined in terms of the direct
invocation metric as

Nind(f1, f2) = N(f1, fmid) + N(fmid, f2) where N(f1, fmid) > 0 and N(f2, fmid) > 0

Recursive invocation metric. This metric identifies the number of times a function f1
calls function f2 and f2 calls back to f1. The value of the metric is the sum of the direct
invocations from f1 to f2 and f2 to f1. Like the indirect invocation metric, the value of
this metric is zero if no recursion exists. The metric is defined as

Nrec(f1, f2) = N(f1, f2) + N(f2, f1) where N(f1, f2) > 0 and N(f2, f1) > 0

3.2 Shared Parameter Metrics

Data element coupling occurs when modules access shared data that is passed in
through a parameter list. If a client passes the same stack to functions in modules M1
and M2, then those modules exhibit data element coupling.

Shared parameter metric. This metric identifies the formal parameters that are
common between two functions. It does this by counting the number of formal pa-
rameters that have the same type and same name. The metric is defined as

P(f1, f2) = | params(f1) ∩ params(f2) |

3.3 Shared Variable Metrics

Shared variable metrics look at all variables—including parameters, global variables,
and local variables—that are shared by functions. These metrics are based on data

188 W.B. Frakes, G. Kulczycki, and C. Saxena

definition coupling [3]. Data definition coupling occurs when modules manipulate
data of the same type. For example, if two modules modify a data structure of type
stack, they exhibit data definition coupling.

There are two different kinds of shared variable metrics. The first, more sophisti-
cated, metric considers variables to be shared only if they can be traced to a common
declaration. For example, suppose variable x is declared in function f0, which passes it
to f1 and f2. Furthermore, suppose f2 obtains x through a formal parameter y, which it
then passes to f3. Then functions f0, f1, f2, and f3 are all related, because they all use or
manipulate a value that originated with a variable declared in f0 (see Figure 1).

Fig. 1. The functions all use a variable that can be traced to the same source

Shared variable metric. This metric identifies variables in two functions that share a
common source. The metric is defined as

V(f1, f2) = | { v | source(v, f1) ∩ source(v, f2) | ≠ ∅ } |

The function source(v, f1) gives the set of sources (variable declarations) for vari-
able v in f1. If v is not a formal parameter in f1, then v will have a unique source. How-
ever, if v is a formal parameter, then v’s source set includes the elements in the source
sets of all corresponding actual parameters. Therefore, the size of v’s source set may
be greater than one.

The simpler version of the shared variable metric considers functions to be related
if they share variables with the same type and the same name.

Shared type-name variable metric. This metric identifies all variables in two func-
tions that have a common type and name. The metric is defined as

V′(f1, f2) = | vars(f1) ∩ vars(f2) |
We also include a variation for each of these metrics in our analysis. The metrics

above count declarations of variables rather than uses. For example, if the only vari-
able shared by two functions was the global stack s, the shared variable metric for
those functions would be one. Even if s appears three times in the body of the first
function and four times in the body of the second function, the value of the metric is
still one. The metrics below count the static occurrences (the tokens rather than types)
of common variables.

Shared variable tokens metric. This metric counts the static occurrences of all vari-
ables in two functions that share a common source. The metric is defined in terms of
the shared variable metric as

Vtokens(f1, f2) = count(v, f1) + count(v, f2) where v ∈ V(f1, f2)

 Case Study of a Method for Reengineering Procedural Systems into OO Systems 189

Shared type-name variable tokens metric. This metric counts the static occurrences
of all formal parameters, global variables, and local variables that are common be-
tween two functions. The metric is defined as

V′tokens(f1, f2) = count(v, f1) + count(v, f2) where v ∈ V′(f1, f2)

Table 2 summarizes the metrics and their definitions.

Table 2. Notations and definitions for the eight coupling metrics used in the study

Name Notation Definition

Direct Invocation Met-
ric

N(f1, f2) invocs(f1, f2)

Recursive Invocation
Metric

Nrec(f1, f2)
N(f1, f2) + N(f2, f1) where

| N(f1, fmid) | > 0 and | N(f2, fmid) | > 0

Indirect Invocation
Metric

Nind(f1, f2)
N(f1, fmid) + N(fmid, f2) where

| N(f1, fmid) | > 0 and | N(f2, fmid) | > 0

Shared Parameter
Metric

P(f1, f2) | params(f1) ∩ params(f2) |

Shared Variable Met-
ric

V(f1, f2)
| { v | history(v, f1) ∩ history(v, f2) | ≠
∅ } |

 count(v, f1) + count(v, f2)
Shared Variable To-
kens Metric

Vtokens(f1, f2)

v ∈ V(f1, f2)

Shared Type-Name
Variable Metric V′(f1, f2) | vars(f1) ∩ vars(f2) |

 count(v, f1) + count(v, f2)

Shared Type-Name
Variable Tokens
Metric

V′tokens(f1, f2)

v ∈ V′(f1, f2)

4 Example: Reengineering ccount

The procedural system analyzed in the study was ccount, a metrics tools implemented
in C that reports counts of commentary and non-commentary source lines and com-
ment-to-code ratios [3]. The ccount tool was initially written in K & R C and later
converted to ANSI C. For the purpose of this study the ANSI C version was used.

190 W.B. Frakes, G. Kulczycki, and C. Saxena

The statistics collected for the ccount tool including the main function are:

• Number of non-commentary lines of code: 749
• Number of files: 7
• Number of functions: 17

The ccount metric tool was used because it is tractable for a small case study, but
non-trivial, so that the case study is still relevant.

This section shows how the method was applied to ccount. We captured the proc-
ess and time taken at each step. The authors acted as the domain experts.

4.1 Domain Expert Creates Function Stop List

For ccount the functions identified to be in the stop list were string manipulation and
file manipulation functions that are provided by the standard C libraries. Since the
system was relatively small, rather than providing the list as a starting point, we ana-
lyzed the output from the next step to help us come up with the functions to be placed
in the stop list. The time taken for this step was 1 hour.

4.2 A Call Graph Is Generated

The cflow tool was used to identify the flow of control (call structure) of ccount. The
output from cflow is in a text format, which we then converted to the graphical repre-
sentation given in Figure 2. The cflow tool provides options to generate output in both
a top-down and bottom-up manner. The graphical representation of the bottom-up
output would simply be the call graph in Figure 2 with the arrows reversed. The time
taken for this step was 2 hours.

Fig. 2. Call graph for ccount tool.

 Case Study of a Method for Reengineering Procedural Systems into OO Systems 191

4.3 Dependency and Context Lists Are Created

Using the call graph created in the previous step, the dependency list and the context
list were created. The dependency list indicates the function that are invoked by a
given function. For example, the function Classify_Lines uses functions
Start_Tokenizer, Get_Token, and Find_Function_Name. The context list indicates the
functions that invoke a given function. For example, Create_Node is used by
Append_Element. In this example, the only function invoked by multiple functions is
Error, which is used by seven other functions. The time taken for this step was 2
hours.

4.4 Objects Are Identified

This step was by far the most involved and the most time-consuming. Therefore, to
make the presentation clearer we have divided it into three sub-steps: collection of
summary data, calculation of metrics, and identification of candidate objects. The
time taken for this step was 48 hours.

4.4.1 Summary Data Is Collected
To determine the various metrics, we first identified the variables and functions
accessed by each individual function. The collection of the required data for each
function was done manually. Lack of a tool for collecting the data made the process
time consuming.

For each function the following data was collected.

• The parameters passed to it
• The local variables defined and accessed
• The global variables accessed
• The functions invoked along with the parameters passed to those functions
• The data type returned by the function

For each variable (parameters, local variables, and global variables) the following
was captured.

• Its name
• Its data type
• Its scope
• The number of static accesses made to it

Shared variables were identified by looking at each file to determine global vari-
ables or local variables manipulated by a function. Ccount did not have any global
variables, but it did have variables with file scope that were manipulated by functions
in that file.

An example of the information collected in this step is given in Table 3. The func-
tion Check_Options has two parameters, options and optionargs. The parameter op-
tions is accessed twice in the body of the function, and optionargs is accessed once.
The function also accesses the locally defined variable ch_ptr eight times, and it
invokes the function Error twice.

192 W.B. Frakes, G. Kulczycki, and C. Saxena

Table 3. Summary data for functions Check_Options and Clean_Command_line

Summary Data Collection Table
Check_Options (params.c)

Parameters char *options 2

 char *optionargs 1

Global variables 0
Local variables char *ch_ptr 8
Functions invoked Error 2
 Clean_Command_Line (params.c)

Parameters char *options 2

 char *optionargs 2

 char **argv[] 9

 int *argc 6

Global variables 0
Local variables char **new_argv 24

 char **files 9

 char *ch_ptr 11

 int new_argc 18

 int num_files 6

 int arg_index 16

 int file_index 4

Functions invoked Check_Options(options, optionargs) 1

 Error(…) 8

 Case Study of a Method for Reengineering Procedural Systems into OO Systems 193

4.4.2 Metrics Are Calculated
Once the summary data for each function was collected, the coupling metrics were
calculated for each pair of functions, provided that neither function is in the stop list.
For example, Table 4 gives the data invocation metric calculated for the ccount func-
tions. Function pairs that had a metric value of zero were not included in the table.

Table 4. Non-zero direct invocation metrics for ccount

Most of the metrics can be calculated simply by inspecting the summary data for
the two functions involved in the metric. The exceptions are the indirect invocation
metric, the shared variables metric, and the shared variable tokens metric. Table 5

First function (f1) Second function (f2) N(f1, f2)

Main Get_Parameters 1

Main Count_Lines 1

Main Report_Metrics 1

Get_Parameters Clean_Command_Line 1

Get_Parameters Error 1

Count_Lines Create_List 1

Count_Lines Error 1

Count_Lines Classify_Line 1

Count_Lines Append_Element 3

Report_Metrics Error 2

Report_Metrics Is_Empty_List 1

Report_Metrics Delete_Element 1

Clean_Command_Line Check_Options 1

Clean_Command_Line Error 8

Classify_Line Start_Tokenizer 1

Classify_Line Get_Token 1

Classify_Line Find_Function_Name 1

Append_Element Create_Node 2

Delete_Element Destroy_Node 1

Check_Options Error 2

Get_Token Error 1

Create_Node Error 2

194 W.B. Frakes, G. Kulczycki, and C. Saxena

shows each of the eight metrics in which the first function (f1) is Clean_Com-
mand_Line and the second function (f2) is Check_Options. The following paragraphs
indicate how to calculate each of these metrics.

Table 5. Metrics for f1 = Clean_Command_Line and f2 = Check_Options

N(f1, f2) 1

Nrec(f1, f2) 0

Nind(f1, f2) 0

P(f1, f2) 2

V(f1, f2) 2

Vtokens(f1, f2) 7

V′(f1, f2) 3

V′tokens(f1, f2) 26

Invocation metrics. From Table 3 we see that Clean_Command_Line calls Check_
Options once, yielding a direct invocation metric of one. Since Check_ Options never
calls Clean_Command_Line back, the recursive invocation metric is zero. In fact, in
this particular study all of the recursive invocation metrics turned out to be zero. The
indirect invocation metric requires slightly more work. Looking at Table 3, we see
that the only other function besides Check_Options that is called by Cleam_Com-
mand_Line is the Error function, which is called eight times. If the Error function
(whose record is not shown in Table 3) had called Check_Options n times, then the
indirect invocation metric would have been 8 + n. Since the Error function never ac-
tually invokes Check_Options, the indirect invocation metric is zero. Note that the di-
rect and indirect invocation metrics are not necessarily symmetric. For example, we
do not—in general—have Nind(f1, f2) = Nind(f2, f1). However, the recursive invocation
metric is symmetric.

Shared parameter metrics. We can also tell directly from Table 3 that functions
Check_Options and Clean_Command_Line both have a parameter named options of
type char and a parameter named optionargs of type char. For this reason, the value
of the shared parameter metric is two. Note that, in this study, we ignored pointers
when determining types—so variables declared with char, char**, and char[] were all
considered to have the same type.

Shared variable metrics. To calculate the shared variables metric we must determine
which variables in Clean_Command_Line and Check_Options can potentially origi-
nate from the same source. From Table 3 we see that there are only three variables in
Check_Options, so there are three candidates. The variable ch_ptr is declared in the
body of Check_Options, so the only way that Clean_Command_Line can share this
variable is if it is passed to Clean_Command_Line through some sequence of function
calls. However, a quick look at the flow graph (Figure 2) tells us that although

 Case Study of a Method for Reengineering Procedural Systems into OO Systems 195

Clean_Command_Line calls Check_Options, there is no call path from Check_Options
to Clean_Command_Line. Therefore, even though Clean_Command_Line also has a
variable named ch_ptr of type char, they are not considered shared for the purposes of
this metric. On the other hand, both options and optionargs are formal parameters in
Check_Options, and since Clean_Command_Line calls Check_Options, we know that
Check_Options must share its formal parameters with the actual parameters passed to
it by Clean_Command_Line. The fact that the actual parameters passed by
Clean_Command_Line also happen to be named options and optionargs is unrelated to
the calculation of this metric; the relevant fact is that the variables come from the same
source. Thus, the value for the shared variable metric is two, and the value for the
shared variable tokens metric is the sum of static occurrences for these variables in
each function: 3 in Check_Options + 4 in Clean_Command_Line = 7.

The shared type-name variables metric is significantly easier to calculate. Both
functions have variables with type-name combinations char/options, char/optionargs,
and char/ch_ptr. Therefore the value of this metric is three, and the value of the
shared type-name variable tokens metric is: 11 occurrences of these variables in
Check_Options + 15 occurrences in Clean_Command_Line = 26.

4.4.3 Candidate Objects Are Identified
Once the individual metrics have been are calculated, a threshold is determined for
each metric, and each metric is individually evaluated to come up with candidate ob-
jects. In this study, the following guidelines were taken into consideration.

• In C++ the function main is not part of any object, therefore the coupling
metrics in relation to that function were not used.

Fig. 3. Distribution of values for the direct invocation metric

196 W.B. Frakes, G. Kulczycki, and C. Saxena

• If the coupling metric for two functions was above or equal to the threshold
value, both were placed in the same object.

• If a function f1 has the same coupling metric with multiple functions in dif-
ferent objects, then this is used as an indication that f1 should be placed in a
separate object as it might be a utility function.

The decision of which threshold to use was empirical to ensure that functions don’t
cluster in one object. In the case of the direct invocation metric, the vast majority of
function pairs had a metric value of zero, several functions had a value of one, and a
few functions had a value greater than one (see Figure 3). A threshold value of one
was chosen—a value of anything greater than one would have meant that too many
functions would be in classes by themselves.

Using the guidelines outlined above, the main function was placed in a class by it-
self, and the Error function was identified as a utility function, so it was also placed in
a separate class. This led to the following partitioning of the functions into objects.

Object 1 Get_Parameters, Clean_Command_Line, Check_Options
Object 2 Count_Lines, Classify_Line, Start_Tokenizer, Get_Token,

 Find_Function_Name, Create_List, Append_Element, Create_Node
Object 3 Report_Metrics, Is_Empty_List, Delete_Element, Delete_Node
Object 4 Error
Object 5 Main

The process of determining a threshold and finding candidate objects was repeated
for all of the metrics, yielding the partitioning of functions in Table 7. The recursive in-
vocation metric is not included because recursive calls did not occur in the application.

4.5 Domain Expert Chooses Objects

In this step the domain expert analyzed the objects for reasonableness. Each metric
was analyzed individually, and the results of this analysis are given below. One of the
criteria used in the analysis was whether the partitions corresponded to the modules in
the C program, which exhibited good modular design in the first place. In particular,
we were always interested to see if the candidate objects for a given coupling metric
successfully identified the list data type. The time taken for this step was 16 hours.

The direct invocation metric provides a good breakup of the objects, but was un-
able to satisfactorily identify the list data type. It groups the functions that relate to
extracting parameters since those functions invoke each other. However, the list func-
tions do not necessarily invoke each other. The indirect invocation metric provides a
breakup of objects very similar to the direct invocation metric. And similarly, it is not
able to identify the list data type. This may indicate that these metrics will give simi-
lar results in general. If so, then the direct invocation metric should be used since it is
easier to calculate.

The shared parameters metric is able to identify the list data type as it clusters all
but one function in the same object. It places the functions Error and Report_Metrics
in the same object as functions which classify lines. Since this metric only considers
the parameter list of functions it does not always separate functions that have separate
responsibilities.

 Case Study of a Method for Reengineering Procedural Systems into OO Systems 197

Table 6. Candidate objects for each of the coupling metrics

Metric Candidate Objects

Get_Parameters, Clean_Command_Line, Check_Options

Count_Lines, Classify_Line, Start_Tokenizer, Get_Token,

Find_Function_Name, Create_List, Append_Element, Create_Node

Direct in-

vocation

 Report_Metrics, Is_Empty_List, Delete_Element, Delete_Node Error

Get_Parameters, Clean_Command_Line, Check_Options

Count_Lines, Classify_Line, Start_Tokenizer, Get_Token,

Find_Function_Name, Append_Element, Create_Node

Report_Metrics, Delete_Element, Delete_Node

Indirect in-

vocation

Error, Create_List, Is_Empty_List

Get_Parameters, Clean_Command_Line, Check_Options

 Count_Lines, Classify_Line, Start_Tokenizer, Report_Metrics, Error

 Delete_Element, Append_Element, Create_Node, Is_Empty_List,

Create_List

Shared

parameters

Destroy_Node, Find_Function_Name, Get_Token

Get_Parameters, Clean_Command_Line, Check_Options

Count_Lines, Classify_Line, Start_Tokenizer, Get_Token,

Find_Function_Name, Append_Element, Create_Node

Report_Metrics, Delete_Element

Shared

variables

Error, Create_List, Is_Empty_List, Destroy_Node

Get_Parameters, Clean_Command_Line, Check_Options
Count_Lines, Classify_Line, Start_Tokenizer, Get_Token,

Find_Function_Name, Append_Element, Create_Node
Report_Metrics, Delete_Element, Destroy_Node

Shared

variable to-

kens

Error, Create_List, Is_Empty_List

Get_Parameters, Clean_Command_Line, Check_Options

Count_Lines, Classify_Line, Start_Tokenizer, Get_Token,

Find_Function_Name

Report_Metrics, Create_Node, Append_Element, Delete_Element

Shared

type-name

variables

Error, Create_List, Is_Empty_List, Destroy_Node

Get_Parameters, Clean_Command_Line, Check_Options

Count_Lines, Classify_Line, Start_Tokenizer, Get_Token,

Find_Function_Name

Report_Metrics, Create_Node, Append_Element, Delete_Element

Shared

type-name

variable to-

kens

Error, Create_List, Is_Empty_List, Destroy_Node

198 W.B. Frakes, G. Kulczycki, and C. Saxena

The calculation of the shared variable metrics in general took up a substantial
amount of time, but their results were not very different to the direct invocation met-
ric. None of the shared variable metrics were able to identify the list data type; they
all tended to have the functions related to the abstract data type either in the utility ob-
ject or grouped with the Report_Metrics function.

Most coupling metrics placed the function Report_Metrics in a separate object. The
task of reporting metrics (in ccount) follows that of counting and classifying lines,
and hence it is best to use different classes for these to separate responsibilities.

If the list data type were already identified, the direct invocation metric would be
the fastest and easiest to use to help determine objects. The shared parameters metric
provides the best breakup of the objects; it comes closer than any other metric in iden-
tifying the list data type.

Fig. 4. Class diagram for object-oriented ccount application

Based on the above observations and using the candidate objects as references, we
chose the following classes for coding the object oriented version of ccount. The list
data type is identified and encapsulated in its own class. The functions main, Error,
and Report_Metrics were each placed in their own class. Figure 4 gives a class dia-
gram of the application.

 Case Study of a Method for Reengineering Procedural Systems into OO Systems 199

Class::CError
 Error()

Class::CCount
 main()

Class::CReport
 Report_Metric()

Class::CCounter
 Count_Lines()
 private:
 char *ch_ptr
 char identifier[MAX_IDENT+1]
 char function_name[MAX_IDENT+1]
 char_class charClass[128]
 Classify_Line()
 Start_Tokenizer()
 Get_Token()
 Find_Function_Name()

Class::CParams
 Get_Parameters()
 private:
 short is_tabbed
 char *delimiter
 char **files
 Check_Options()
 Clean_Command_Line()

Class::CList
 Is_Empty_List()
 Create_List()
 Append_Element()
 Delete_Element()
 private:
 CElement *list
 Create_Node()
 Destroy_Node()

4.6 Coding

For coding in C++ the following guidelines were followed.

• Rather than using malloc and realloc functions to allocate memory, new was
used.

• Rather than using #define, const was used.
• Some variables had to be renamed to adhere to C++ naming convention.

Otherwise, an effort was made to keep the function names the same and the algo-
rithms the same. Due to the similar structure and syntax of the C and C++ languages,
it was possible at times use the C functions with few changes.

200 W.B. Frakes, G. Kulczycki, and C. Saxena

The parameters extracted from the command line were placed as private variables
in the class CParams and were accessed using public access get methods. The list was
made a private variable in the CList class; only the methods in the CList class modi-
fied the list.

The global (file scope) variables accessed by the functions Get_Token, Start_Toke-
nizer, and Find_Function_Name were made private variables of the class CCounter.

To ensure that the code developed in C++ gave the same result as the C version,
the 19 regression tests developed for C code in [3] were utilized. Abnormal inputs
were provided to check if the code is able to handle them. And the output generated
for the statistics of a valid C file was verified to ensure that it was accurate. The C++
version was found to perform satisfactorily and it passed all the test cases.

Time taken for the coding of ccount in C++ was 24 hours.

5 Process Variables Captured

The times taken for each step are shown in Table 7. The total time taken for the proc-
ess was 93 hours. Though we did not record the times it took to calculate each metric
in identify objects step, we estimate that we did not spend more than six hours calcu-
lating the direct invocation metric and the shared parameter metric—the two metrics
that seemed to give the best results.

Table 7. Process Variables

Step Time taken

Create stop list 1 hour

Create flow graph 1 hour

Dependency list 2 hours

Identify objects 48 hours

Domain expert analysis 16 hours

Coding 23 hours

Total 93 hours

The following data was captured for the ANSI C version and C++ version of
ccount.

Statistics for the C version:

• Number of non-commentary lines of code : 749
• Number of files : 7
• Numbers of Functions : 17

Statistics for the C++ version:
• Number of objects : 6
• Number of real objects : 4

 Case Study of a Method for Reengineering Procedural Systems into OO Systems 201

• Number of utility objects : 2
• Real objects with one function : 1
• Number of non-commentary lines of code : 679

6 Conclusion and Future Work

Coupling metrics provide a good starting point for identifying objects, but the metrics
we used in this study had limitations. For example, they were not able to completely
identify the list data type in ccount. Hence domain expert analysis is an important step
in the process—it is necessary for finalizing the optimal objects from the candidate
objects identified from the coupling metrics.

The largest amount of time spent in the process was in determining the coupling
metrics. The direct invocation metric and shared parameters metric were found to
provide reasonable objects very close to the objects finalized by the domain expert.
The time taken to determine these two metrics was considerably less than the time it
took to determine the shared variable metrics, since they do not require the collection
of the detailed summary data shown in Table 3. Therefore, the process could be ac-
celerated if only the direct invocation and shared parameter metrics were taken into
consideration. Using a tool like the CIA (C Information Abstraction System) [4]
would also help in speeding up the process.

Some things to consider for future case studies would be using the direct invoca-
tion and shared parameter metrics in conjunction to arrive at candidate objects. When
more than one metric is used, one could either sum the metrics or assign a weight to
each metric, indicating that one form of coupling is considered more relevant [5]. For
example, we might calculate the combined direct invocation and shared parameters
metric as 2 * direct invocation metric + 3 * shared parameters metric. In this case the
higher weight attached to the shared parameters metric indicates a data definition
coupling is more relevant than routine call coupling.

This case study presents a good first step in determining how to reengineer a leg-
acy procedural system into an object-oriented system. The methodology we examined
was found to be helpful in identifying objects. It can also serve as a framework that is
usable with coupling metrics other than those presented here.

References

[1] Thomas P. Pole, Pole Method for C to C++ Reengineering. Personal Communication.
[2] William B. Frakes and Thomas P. Pole, “An Empirical Study of Representation Methods

for Reusable Software Components,” IEEE Transactions on Software Engineering. Vol.
20, No. 8, August 1990, pages 617–630.

[3] William B. Frakes, Christopher J. Fox, and Brian A. Nejmeh, Software Engineering in the
UNIX/C Environment. Prentice Hall, Englewood Cliffs, 1991.

[4] Yin-Farn Chen, Michael Y. Nishimoto, and C. V. Ramamoorthy, “The C Information Ab-
straction System,” IEEE Transactions on Software Engineering. Vol. 16, No. 3, March
1990, pages 325–334.

202 W.B. Frakes, G. Kulczycki, and C. Saxena

[5] Michael Whitney, Kostos Kontogiannis, J. Howard Johnson, Morris Bernstein, Brian Cor-
rie, Ettore Merlo, James McDaniel, Renato De Mori, Hausi Muller, John Mylopoulos,
Martin Stanley, Scott Tilley, and Kenny Wong, “Using Integrated Toolset for Program
Understanding,” in Proceedings of the CAS Conference (CASCON 95). pages 262–274.

[6] Roger S. Pressman, Software Engineering: A Practitioner’s Approach. Boston: McGraw-
Hill, 2005.

Reconciling Subtyping and Code Reuse in
Object-Oriented Languages: Using inherit and
insert in SmartEiffel, the GNU Eiffel Compiler

Dominique Colnet1, Guillem Marpons2, and Frederic Merizen1

1 LORIA (UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP) - France
colnet@loria.fr, merizen@loria.fr

2 Universitat Politècnica de Catalunya (UPC) - Spain
gmarpons@lsi.upc.edu

Abstract. SmartEiffel has been enjoying two different mechanisms to
express subtyping and implementation inheritance for one year. After
large scale practical tests and thanks to user feedback, this paper fi-
nalises the new typing policy of SmartEiffel, which combines two forms
of multiple inheritance with genericity in one statically-checked, object-
oriented language.

Having two forms of inheritance allows the designer to capture more
design decisions in the source code. It is now straightforward to share
reusable code between otherwise unrelated types. The new mechanism
allows to reuse code from an existing class without polluting the reuser’s
interface. It also enables an elegant implementation of some design pat-
terns.

Furthermore, this mechanism helps compilers to statically remove
more dynamic dispatch code. It can also be used to add a no-penalty
and no-risk multiple-inheritance-like construct to a single-inheritance
language such as Java.

1 Introduction

The Eiffel language is intended to favour good software engineering practises. Its
concern about building reusable software artifacts [10] should be stressed as the
most salient trend of its design. The inheritance mechanism, in particular, was
conceived as a powerful reuse mechanism with a panoply of adaptation facilities
for inherited methods and attributes, and the possibility of multiple inheritance.

Still, subclassing and subtyping are strongly coupled in traditional Eiffel.
Reusing code through inheritance is desirable for the great flexibility it provides
and because of performance considerations. In spite of this, enforcing a subtyping
relation when inheriting has a number of drawbacks. The problem is obviously
not specific to the Eiffel world [3] and this coupling sometimes produces flawed
designs (examples in section 4). The designers always have to balance these
disadvantages with the hindrance of reusing code through other means than
inheritance, or even not reusing code at all—the worst being copy-pasting. In
fact, the designers of Eiffel have recognised this conflict, slightly relaxing the

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 203–216, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

204 D. Colnet, G. Marpons, and F. Merizen

subclassing/subtyping relation. This has been done by allowing argument types
to be covariantly redefined and method visibility to be restricted in subclasses,
leading to the well-known type-safety problems of the language [11].

The SmartEiffel team 1 has been working on Eiffel tools, compilers and li-
braries for more than ten years [1, 2, 12, 16, 17]. In the remainder of this paper,
we will use the unqualified term “Eiffel” as a shorthand for “the Eiffel dialect
of the SmartEiffel team” 2. This paper discusses an implementation-only inher-
itance language construct that we introduced in February 2005 (release 2.1 of
the SmartEiffel compiler). This mechanism is conceived as a complement to the
traditional Eiffel inheritance and gives the designer full control about which sub-
typing relations are actually established. To avoid confusion we use the terms
inheritance or inheritance mechanism for the traditional Eiffel inheritance, and
insertion or insertion mechanism for the recently devised language construct 3.

Since we first introduced the insertion mechanism, we have had the opportu-
nity to extensively put it to use, on large scale programs and libraries, and with
the feed-back of many SmartEiffel users. Thus, this paper is not only an aca-
demic research work but also a practical report. Practising the mechanism has
helped us to clarify ideas about what kind of type-system we need to best fit the
new mechanism into the language. SmartEiffel currently implements the type-
checking rules presented here, with one restriction regarding expanded classes
that will be lifted in the next release (SmartEiffel 2.3). We refactored SmartEif-
fel’s 450 standard library classes to exercise the insertion mechanism, and the
classes now make use of 350 inherit links and 300 insert links. Our work on the li-
brary clearly indicates that the new language construct favours the reconciliation
between subtyping, static checking and reusability.

The paper is organised as follows. Section 2 introduces the insertion mech-
anism and some necessary background about Eiffel. The new typing policy is
presented in section 3. Examples of how the insertion and inheritance mecha-
nisms can be used together to remove certain specific design flaws and improve
reuse opportunities are presented in section 4. Section 5 compares our work with
papers or existing languages with similar aims. Section 6 concludes.

2 Adding the Insertion Mechanism to Eiffel

Eiffel is an object-oriented language that features multiple inheritance, static
typing, (constrained) genericity and design by contract. As in Smalltalk [6] even
basic entities such as small integers are true objects of some existing class. Uni-
formity in the type system helps to keep the language simple and to make all
those facilities as broadly appliccable as possible. The language is well-suited for
large software projects and teams.
1 All authors of this paper are members of the current SmartEiffel team. This paper

can be considered as the work of the whole SmartEiffel team.
2 The reader might be aware that there are several dialects of the Eiffel language. The

SmartEiffel dialect shares a common root with the ecma standardisation attempt [4]
but diverged from it in May 2005. Since then, SmartEiffel has made its own way.

3 This mechanism has been known to Eiffel users as non-conforming inheritance.

Reconciling Subtyping and Code Reuse 205

Legend:

Inherits

Inserts B
C

D

A

F

E
C inserts A
E inserts A
F inserts B
F inserts C
F inserts D

Full listing of the insert
relationship:

B inherits from A
D inherits from A
D inherits from B
D inherits from C
E inherits from C
F inherits from A

Full listing of the inherit
relationship:

Fig. 1. The inherit and the insert relationships on a non-trivial example

2.1 Keeping inherit and Adding insert

The traditional inheritance mechanism introduced from the very beginning of
Eiffel is still present and unchanged. The inheritance relationship both induces
a subtyping relationship and introduces code reuse. The classes that a class
inherits from constitute a list of zero, one or more elements called the inherit list
of that class. Syntactically, the inherit list is introduced by the inherit keyword
if non-empty. In the remainder of this paper, “A inherits from B” means that
a path using only inherit links exists from A to B. Saying “A inherits directly
from B” means that B is syntactically a member of the inherit list of A.

In the new Eiffel syntax, a class can also have a second parent list introduced
by the new insert keyword. This is the relationship to be used when code has to
be inserted just for implementation purpose. The insert list can syntactically
have zero, one or more parents. In the remainder of this paper, “A inserts B”
means that a path using insert or inherit links exists from A to B, but A does not
inherit from B (i.e. at least one insertion link exists from A to B in every path).
The sum of the inheritance graph and the insertion graph must be an acyclic
directed graph. Saying “A inserts directly B” means that B is syntactically
a member of the insert list of A. Figure 1 summarises the inheritance and
insertion relationships on a non-trivial example.

The idea behind the insertion mechanism is simple: to complement the tradi-
tional inheritance mechanism with a new one that keeps the code reuse aspects
but discards the subtyping relationship. As we will see in section 3, the fact
that A inserts B does not allow us to assign an expression of type A into some
variable of type B. For such a polymorphic assignment to be legal, A must be a
subtype of B which can also be expressed as “A inherits from B”.

2.2 The Special Status of the any Class

There is a special class in Eiffel, named any, somehow comparable with Java’s
Object class, that has been traditionally seen as the universal ancestor of the
inheritance graph. A special rule still exists for class any, but now that we have

206 D. Colnet, G. Marpons, and F. Merizen

added the new insert relationship, the status of any is slightly different. Class
any is the only class that has no direct ancestor at all: both its inherit list and
its insert list are empty. All other classes must have at least one direct ancestor
either through the inherit list or through the insert list. Class any is now the
final ancestor of the inheritance / insertion graph. As a consequence, if a class
x is not the any class itself, then x either inherits from or inserts any.

Actually, the any class contains important methods that all classes must
have at runtime, including code necessary for object comparison, cloning and
introspection support. Thanks to the rules we have just presented, we are sure
that this code is part of all Eiffel classes.

2.3 Runtime Requirements

We do not only want a language dedicated to software engineering and specifi-
cation, we also want Eiffel to keep the potential efficiency one can expect from
a low-level language such as the C language4. A simple integer addition must
be as efficient in Eiffel as in C. In Eiffel’s runtime model, this goal is achieved
by having two kinds of classes: normal classes and expanded classes. Expanded
objects are the instances of expanded classes.

Most classes are normal (non-expanded). Normal objects are handled through
a reference. When passed as an argument, a pointer to the object is copied onto
the stack. Dynamic dispatch is enabled for such objects.

The machine’s basic entities such as integers, floating-point numbers and
booleans are defined by expanded classes. Users can create their own expanded
classes using the expanded keyword. Expanded objects are directly represented
as values and cannot be shared. Argument-passing is performed by copying the
object’s value onto the machine stack. There is no dynamic dispatch for expanded
objects.

We require expanded classes to have an empty inherit list and never appear
in another class’s inherit list. In that way, rule 1 (section 3) is enough to ex-
press within the type system the fact that there is no polymorphism involving
expanded objects.

2.4 Genericity

Eiffel has got generic classes from the very beginning. One of our design goals
was to get the most constructive interaction possible between reuse through
genericity and reuse through insertion.

A typical example of genericity at work is the class array[e] where e
is called the formal generic argument. The generic argument e may carry a
constraint (see next paragraph), but it is not the case here so e can be replaced
with any type (called an actual generic argument), including expanded types:

4 The runtime efficiency of numerous languages is compared at the “Computer Lan-
guage Shootout Benchmarks” (http://shootout.alioth.debian.org). Although
we don’t completely agree with the measuring scale, we want our Eiffel language
to be able to sustain a good rank in this comparison.

Reconciling Subtyping and Code Reuse 207

array[string], array[integer 8], array[array[integer 16]] etc. are
all valid types. Being able to directly use integers of the underlying machine
as the element type of a generic class is an important benefit of having a very
uniform typing policy.

Constrained genericity is the possibility to require a generic parameter to im-
plement some existing class, generally an abstract class with just a few abstract
methods. For example, the elements of a hash-based implementation of a set
must implement the methods of class hashable. This is denoted by giving the
hashed set a constrained generic parameter: hashed set[e ->hashable]. In
section 3 (rule 5), we claim that it is sufficient for the actual generic parameter
to insert the constraint. An unconstrained generic parameter can be treated as
a syntactic shortcut for a parameter constrained by the class any. For instance,
the array class can be considered as defined as array[e ->any]. An important
consequence is that expanded classes can be used as generic parameters although
they cannot inherit from any class (including any).

3 Typing and Checking Policy

Because of space concerns, it is not possible to give the whole set of rules we
apply to check Eiffel programs in this paper. We will focus on the main questions
about our typing and checking policy in order to be able to answer the following
crucial questions: What can be assigned into what? What type can be used
when some method or attribute is overridden? What type can be used in case
of a generic derivation? What about constrained genericity?

Rule 1 (Assignment). An expression of type A can be assigned into a variable
of type B if and only if A and B are the same type or A inherits from B.

This first rule prevents an expression of one type from being assigned to a
variable of another type if no subtyping relation exists between them. It directly
follows that if A inserts B, the assignment is statically rejected and polymor-
phism is not possible. Since expanded classes cannot be at either end of an
inheritance relationship (section 2.3), rule 1 is enough to forbid assignments
from an expanded type to any other type.

Rule 2 (Argument Passing). An expression of type A can be passed as an argu-
ment of formal type B if and only if A and B are the same type or A inherits
from B.

This second rule simply states that the same policy is used both for assign-
ments (rule 1) and for argument passing (rule 2).

Rule 3 (Redefinition Under Inheritance). When overriding an inherited method
or attribute, the types of any argument and/or of its result can be replaced
covariantly with a type that inherits from the replaced type (i.e. a subtype).

Actually, for inheritance, the legacy covariant principle of Eiffel is kept un-
changed: all types are treated the same way (both result type and argument
types), the number of arguments cannot change; if the overridden signature has
a result type, the new one must also have a result type. Thus, all legacy code
can be reused as is.

208 D. Colnet, G. Marpons, and F. Merizen

Rule 4 (Redefinition Under Insertion). When overriding an inserted method
or attribute, the type of any argument and/or of its result can be replaced
covariantly with a type that inherits from or inserts the replaced type.

As in the case of rule 3, we assume that the overridden signature keeps the
same number of arguments and that a result type cannot be discarded or added.
Rule 4 is more permissive than rule 3 about the new type one can use because
the overridden feature comes through a direct member of its insert list. Poly-
morphism between this inserted ancestor and the current type is not possible
and it is thus safe to do so. This increased freedom is in fact beneficial and gives
us more flexibility to adapt inserted code.

In a similar way, the exportation status of the inserted methods and/or at-
tributes (i.e. from which other classes they are visible or can be called) can be
freely changed. For example, we can insert a public attribute and convert it to a
private one, or any other of the fine-grained intermediate possibilities that Eiffel
offers. In traditional Eiffel this was also allowed under inheritance, but it creates
type safety holes in the same manner as covariant argument changing [11]. Under
insertion, the mechanism is safe and in fact plays an important methodological
role as shown in section 4.2.

Rule 5 (Generic Derivation). When deriving an actual type from a generic class,
we can instantiate each parameter using any class that inserts or inherits from
the type that constrains the corresponding placeholder. The resulting fully in-
stantiated type is only valid if statically proved correct (recursively) with respect
to rules 1-5.

This rule allows to instantiate a generic class using a parameter that is not a
subtype of the constraining type. Both inheritance and insertion are permitted
here. This can be surprising at the beginning, but is type safe, because the re-
placement of the formal parameter by the actual one is done at compile time and
the generic derivation obtained is statically checked. In fact, polymorphism is
often not needed between the generic type constraint and the type that replaces
it in a generic derivation. If the actual parameter is a subtype of the constrain-
ing type, the derivation will be statically valid. On the contrary, if the actual
parameter only inserts the constraining type, the validity of the derivation must
be checked by the compiler.

Rule 5 is meant to accept expanded types as any other parameter in classes
such as array[e ->any]. In this way the insertion mechanism helps us to fit
non-polymorphic and efficient basic types (i.e expanded types) in a very uniform
type system that maximises type combining opportunities.

The insertion mechanism defined by those rules provides useful program de-
sign options, but it can also improve runtime and compile-time performance.
Since insertion does not entail a subtyping relationship as inheritance does, there
are less edges in the subtyping graph when insertion is used. Compilers that do
type prediction [16] can predict smaller sets of possible dynamic subtypes for a
given static type. This increased knowledge of static types can result in smaller
dynamic dispatch functions or smaller virtual function tables. It would also be

Reconciling Subtyping and Code Reuse 209

possible to extend single-inheritance based languages like Java with this mech-
anism, without changing the dynamic dispatch mechanism.

4 Examples of Code Reuse

The next examples are intended to show how the new insertion mechanism can
help to reconcile reuse and other software engineering principles. We start with
code sharing (section 4.1) because it is the most simple use of the insertion
mechanism, although it is not the most illustrative of the benefits of insertion
when—as in Eiffel—multiple inheritance is available. Many of the examples come
from the SmartEiffel libraries and tools [1].

4.1 Sharing Methods and Attributes with Insert

Two or more classes will sometimes have a lot of commonalities in their implemen-
tation, while playing quite different roles in the design. The insertion mechanism
allows those classes to share code without adding any spurious subtyping rela-
tions. For instance, in the SmartEiffel compiler the class create expression is
a specialisation of the abstract class expression (a create expression is an
expression), as shown in figure 2. Similarly, the class create instruction is a
specialisation of the abstract class instruction. Because the implementation of
the class create expression is similar to the implementation of the class cre-
ate instruction, many common instance variables and methods are defined in
create support. The use of insertion (figure 2) emphasises the fact that cre-
ate support is just a useful place to share common code which is necessary to im-
plement both create expression and create instruction and that there is
no possible substitution of create expression with create instruction (or
conversely). If inheritance was used (this would probably be the solution adopted
with traditional Eiffel) this design decision would not appear in the code, making
the role of each class more obscure.

Interestingly, the methods defined in create support can be triggered due
to dynamic dispatch although they are inserted (not inherited). For example, a
shared method of create support can be the implementation of an abstract
method of the class create expression. The class expression has a lot of
heirs and dynamic dispatch does work as expected. The fact that a method is
inserted does not preclude using dynamic dispatch on that method.

CREATE_SUPPORT

CREATE_EXPRESSION

EXPRESSION

CREATE_INSTRUCTION

INSTRUCTIONLegend

Inherits

Inserts

Fig. 2. Sharing code between unrelated classes. A routine storage example.

210 D. Colnet, G. Marpons, and F. Merizen

While this use of insertion appears all across our tools and libraries, and has
contributed, in our opinion, to clarify the design, having this possibility would be
even more beneficial to languages such as Java that do not have multiple class in-
heritance. Note that all three of code support, expression and instruction
contain code, and reducing any of them to mere interfaces would result in signif-
icant code duplication. Furthermore, all three of them also have state (instance
variables). It would not be reasonable, for instance, to move code support
up in the hierarchy and turn it into a common ancestor expression and in-
struction, as this would clutter numerous non-creation-related instructions
and expressions with useless attributes. Adding the insert mechanism to the
Java language would solve this problem with little or no changes required to the
runtime system. Particularly, since insertion does not create dynamic dispatch
possibilities, the single-inheritance dispatch mechanism of the JVM could be
kept intact.

As a special case of code sharing, the insertion mechanism can be used to
share a set of related constant definitions. This effectively emulates the primary
use of Java’s “static import” mechanism.

4.2 Hiding Excess Methods

When inheritance is the only code reuse mechanism available, the benefits of
reusing code will sometimes be mitigated by the fact that the interface of the
child gets polluted by some public methods from the parent. Using the insertion
mechanism, the programmer can effectively make those superfluous methods
private, eliminating their impact on the child’s interface.

For instance, in Java the class java.util.Stack extends java.util.Vector,
where the class Vector is a resizable ordered collection of elements. This tech-
nique makes Stack very easy to implement and avoids duplicating Vector’s
code. Unfortunately, the spurious subtyping relationship between a Java Stack
and a Vector makes it possible to use all methods of the class Vector on Stack
objects as well. The class obtained is not a pure stack because one can directly
peek or put elements at any position in the Stack.

In traditional Eiffel, the class stack can hide methods and attributes inherited
from the class vector, but this protection is quite weak. If stack inherited from
vector then a stack object could be polymorphically assigned to a vector
variable and any method of vector we wanted applied to the stack object
could be called (even with the assumption that some methods like put had
been removed from its public interface). The following code is accepted by the
compiler if stack inherits from vector:

local
s: stack
v: vector
...

do
create s.make

Reconciling Subtyping and Code Reuse 211

...
v := s
v.put(an element, a position)
...

It is dangerous for an external client of an object to call methods that have
been eliminated from its public interface because they can violate the invariant
of the class and the object would have an unpredictable behaviour as from that
point. In fact, code like that must be considered incorrect, even if current Eif-
fel compilers are not capable of discovering this situation in the general case.
SmartEiffel avoids this problem by forbidding narrowing the exportation status
of an inherited method or attribute.

On the contrary, the protection is effective if the class stack reuses code from
the class vector by inserting it. With insertion it is no longer possible to assign
an expression of type stack into a vector variable, so the previous code is
rejected. It is always safe to narrow the exportation status of inserted methods
and attributes because they can not be secretly called via a parent interface.
This way we can easily implement a pure and safe stack.

Changing covariantly the type of an argument to an inserted method is also
safe. If the class vector had a binary method merge(other: vector): vec-
tor for getting a new vector containing the elements of two vectors merged in a
particular order, it would be possible to redefine the method in class stack so
as to cope with stacks only. The stack’s version of the method would have sig-
nature merge(other: stack): stack, and as it could never be called through
the vector’s interface, the compiler could guarantee that only stack objects
were passed to the method. Covariant change of argument types is still useful
also when inheriting, so the traditional rule, even if unsafe, has been kept.

As inheriting from any is no longer mandatory (see section 2.2), even its
methods can be reliably hidden if the designer wants to. For instance, one may
decide not to export the possibly slow equals comparison method. This is a way
to promote the usage of the basic fast comparison operator (the built-in == in
Java), and to favour the use of as much aliasing as possible [17].

Similarly, the universal clone inserted method can be hidden in some classes
in order to make duplicating instances of that class a restricted operation. This
is useful when implementing the Singleton and Flyweight design patterns [5].
The intent of the Singleton design pattern is to ensure that a class has only one
instance, and to provide a global access point to it. The intent of the Flyweight
design pattern is to use sharing to support large numbers of fine-grained objects
efficiently. A maximal aliasing of flyweight objects is required and the developer
does not want duplication methods to be called (except, maybe, for the Flyweight
factory itself). Thanks to the insertion mechanism, the accidental duplicating of
a Singleton or Flyweight object can be avoided safely.

4.3 Other Design Pattern Examples

Finally, we show how some common design patterns can be better implemented
with insertion. The Class Adapter design pattern [5] (not to be confused with

212 D. Colnet, G. Marpons, and F. Merizen

TARGET

ADAPTER

ADAPTEE Legend

Inherits

Inserts

Fig. 3. Using insertion for the Adapter design pattern

the Object Adapter) converts the interface of a class into another interface the
clients expect.

Adapters let classes with otherwise incompatible interfaces work together. As
shown on figure 3, an adapter has multiple parents: typically, the class to be
adapted, the adaptee, and the interface we want to implement, the target.
Still, we don’t want the adapter to be a subtype of the adaptee—that’s why we
are using the Adapter pattern in the first place. It is natural for the adapter to
insert the adaptee.

As a side note, the UML diagram of the Class Adapter design pattern in [8]
is annotated with an implementation tag for the inheritance link between the
class adapter and the class adaptee, precisely the link for which we are using
insertion.

The Template Method pattern [5] defines the skeleton of an algorithm in an
operation, deferring some steps to subclasses. Template Method lets subclasses
redefine some steps of an algorithm without changing the algorithm structure.

When all concrete classes that need to define the Template Method are sub-
types of a common ancestor type, it is straightforward that the Template Method
has to be stored in this common ancestor and that the insertion mechanism is not
useful. However, in a situation similar to the one of figure 2, that is to say when the
Template Method must be shared by classes that are by no other means related,
insertion does help. Thus, the classcreate support can contain Template Meth-
ods to be shared by create expression and create instruction. Again, the
use of insertion emphasises the fact that the purpose of create support is to
share code.

5 Related Work

There have been many attempts to provide separate mechanisms for code reuse
and subtyping. Most of those solutions also separate the unit of code reuse
(modules, implementations, traits etc.) from the unit of subtyping (interfaces),
while C++ and our solution rely on a single unit, the class.

5.1 ecma Eiffel

Our proposal is rooted in the discussions for providing an insertion-like mecha-
nism for Eiffel during the standarization efforts of the last years, discussions in
which the SmartEiffel team has been involved. The ecma final document [4] in-
cludes such a mechanism—with a different syntax—that at the time this is being

Reconciling Subtyping and Code Reuse 213

written has not been implemented by any compiler. As, among other differences,
the runtime model supported by ecma Eiffel differs from the one of SmartEiffel
(for example, expanded objects have a completely different meaning), the typing
policy and the integration of the insertion mechanism with other features of the
language have been specifically developed for SmartEiffel.

5.2 SCG Traits

Schärli et al. of the Software Composition Group present a mechanism called
traits and discuss its implementation in Smalltalk [13]. Unlike classes, traits
cannot have attributes and they cannot be part of an inheritance relationship,
neither as parents nor as children. However, traits and classes can be composed
of one or more sub-traits. Like insertion, the trait composition mechanism allows
to reuse code without implying a subtyping relationship.

The trait composition mechanism avoids the most difficult issues of diamond
inheritance, so the authors claim, thanks to traits not having attributes. In Eiffel,
it is possible to insert a class even if it has attributes without suffering adverse
effects. In the case of diamond inheritance, Eiffel’s standard feature renaming
mechanism allows the program to choose for each attribute if it is to be shared
or replicated.

Because they do not take part in inheritance relations, traits enjoy the flatten-
ing property, which means that trait composition can be interpreted as simple
textual substitution (with a few simple restrictions to take naming conflicts into
account). Most importantly, if a class obtains a method that contains the super
keyword through trait composition, that keyword’s meaning does not depend on
the trait where the keyword is written, but only on the class that contains the
method through composition. The flattening property makes it possible to write
traits that work as generic extensions. For instance, the authors show how to
write a trait that can be used to make a synchronising stream from any input
stream. We cannot hope to duplicate this result in a language with multiple
inheritance such as Eiffel because, in the case of an inheritance diamond, the
Precursor keyword must be complemented with the name of a parent class to
avoid ambiguity. Of course, it is not possible to write the name of the parent
class in a trait, since this name is only known in the classes that use this trait.

5.3 Mixins

In the mixin inclusion mechanism as illustrated by Ruby’s [15] implementation,
the unit of code reuse, called a module, can hold methods and define state vari-
ables. Mixin inclusion is similar to class insertion in the sense that a class or a
module can include one or more modules to reuse their implementation without
entering a subtyping relationship. Mixins differ from classes in the sense that
classes cannot inherit from modules, and modules cannot inherit from anything.
Moreover, modules cannot have direct instances. Technically, mixin inclusion is
handled by language processors through anonymous classes and an underlying
single inheritance mechanism, which requires the module inclusion graph to be
linearised.

214 D. Colnet, G. Marpons, and F. Merizen

5.4 Sather’s Class Inclusion

Sather has a mechanism for code reuse that is very similar to insertion [7]. Un-
like Eiffel, Sather has a class/interface dichotomy just like Java. As their names
suggest, classes can hold code while interfaces cannot. In Sather, interfaces can
inherit from interfaces, and classes can implement interfaces. However, there
is no such thing as inheritance between classes in Sather. Instead, a class can
include another class. Sather’s inclusion mechanism resembles Eiffel’s insertion
mechanism in that it handles multiple inclusion seamlessly, and allows the de-
veloper to restrict the availability of included methods or attributes, just like
the technique discussed in section 4.2.

The main difference between our mechanism and Sather’s is the fact that
inheritance and insertion are handled uniformly by our mechanism, while Sather
relies on a class/interface dichotomy. On another point, the designers of Sather
did not reap the byproduct of safe covariant redefinitions through insertion. In
Sather, only contravariant redefinitions of argument types are allowed.

5.5 Timor’s Reuse Variables

The Timor language [9] separates interfaces from implementations in a way
reminiscent of Sather.

Interfaces define types by listing the names and signatures of their methods,
and they can take part in subtyping relationships by extending other interfaces.
Interfaces can also include other interfaces, which allows them to inherit from
interfaces without entering a subtyping relationship—a process that can be sim-
ulated in Eiffel by abstract classes inserting other abstract classes.

Implementations of a given interface supply actual code and attributes to sup-
port that interface’s semantics. Implementations cannot play the role of a parent
or a child in an inheritance relation. Instead, to achieve code reuse, implemen-
tations can have reuse variables, which behave like normal sub-objects with one
exception. If an implementation lacks a method that is part of its interface, then
that method is statically looked up in its reuse variables.

One interesting consequence of this model that completely decouples code
reuse from inheritance is that the reused code does not pollute the reusing im-
plementation. Its state variables are kept logically separate, and methods that
are not needed to implement the reuser’s interface are not included into it.

5.6 C++ Private/Protected Inheritance

The C++ mechanisms known as private and protected inheritance [14] bear
a superficial resemblance with our insertion mechanism. However, they differ in
one substantial way: the C++ mechanisms do not really prevent polymorphism.
When a class b privately inherits from a class a, class b is allowed to perform
polymorphic assignments of b objects to a variables. While other classes are
not allowed to perform such polymorphic assignments, there is no mechanism
to prevent b from letting pointers escape, so polymorphic calls can still happen
even outside of b. As a corollary, when it comes to hiding inherited methods

Reconciling Subtyping and Code Reuse 215

C++ private or protected inheritance has the same problem as Eiffel inheritance.
If b lets a pointer to itself of type a escape, that pointer can be used to access
even privately inherited methods.

6 Conclusion

During our work on the Eiffel language, we have exercised the insertion mecha-
nism on a large scale project (the whole SmartEiffel compiler and tools as well
as its large and numerous libraries [1]). This simple mechanism turns out to be
valuable to capture more design information in the source code of applications.
Code and design reuse opportunities then arise that were previously in contradic-
tion with other design goals as type-safety, information-hiding, performance, or
small memory footprint. Some design patterns can be implemented in a cleaner
way with insertion. When inserting, covariant redefinition of arguments is no
longer dangerous and does not incur type soundness problems. Exportation can
also be tightened in subclasses without any problems.

The slight increase in complexity that this new mechanism entails is more
than offset by the better match of efficient non-polymorphic types (expanded
types) with the insertion mechanism. The uniformity of the type-system has
been kept.

Acknowledgements

The research of G. Marpons is funded by the Ministerio de Educación y Ciencia
and by FEDER under Grant TIC2004-06320-C03-01.

We want to acknowledge the work of Cyril Adrian and Philippe Ribet, the
main architects of the compiler’s new core. Many thanks to Marko Van Dooren
for his feedback during the preparation of this paper. We are also grateful to all
SmartEiffel users for their feedback and all their helpful comments during the
practice of the insertion mechanism.

References

1. D. Colnet, P. Ribet, C. Adrian, V. Croizier, and F. Merizen. Web site of SmartEiffel,
the gnu Eiffel compiler, tools and libraries. http://SmartEiffel.loria.fr.

2. D. Colnet, P. Coucaud and O. Zendra. “Compiler Support to Customize the Mark
and Sweep Algorithm.” 1st ACM SIGPLAN International Symposium on Memory
Management (ISMM’98), pages 154-165, 1998, Vancouver, BC, Canada.

3. W. Cook, W. Hill, and P. Canning. “Inheritance is Not Subtyping.” 17th ACM
Symposium on Principles of Programming Languages, pages 125–135, 1990.

4. ecma Normalisation group for the Eiffel language definition TC39-TG4,
http://www.ecma-international.org/memento/TC39-TG4.html.

5. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. “Design Patterns: Elements of
Reusable Object-Oriented Software.” Addisson-Wesley, Reading, Massachusetts,
1995. isbn 0201633612.

216 D. Colnet, G. Marpons, and F. Merizen

6. A. Goldberg and D. Robson. “Smalltalk-80, the Language and its Implementation.”
Addison-Wesley, Reading, Massachusetts, 1983.

7. B. Gomes, D. Stoutamire, B. Vaysman, and H. Klawitter. “Sather 1.1: A language
manual.” http://www.icsi.berkeley.edu/~sather.

8. J. M. Jézéquel, M. Train, and C. Mingins. “Design Patterns and Contracts.”
Addisson-Wesley, 1999. isbn 0201309599.

9. J. L. Keedy, C. Heinlein and G. Menger. “Reuse Variables: Reusing Code and
State in Timor.” International Conference on Software Reuse 2004, Vol. 3107 of
LNCS, Springer Verlag, pages 205–214, 2004.

10. B. Meyer. “Reusable Software.” Prentice Hall, 1994. isbn 0132454998.
11. B. Meyer. “Beware of polymorphic catcalls.” http://archive.eiffel.com.
12. P. Ribet, C. Adrian, O. Zendra and D. Colnet. “Conformance of agents in the

Eiffel language.” Journal of Object Technology (JOT), 2004, Volume 3. No 4.,
pages 125-143.

13. N. Schärli, S. Ducasse, O. Nierstrasz, A. Black. “Traits: Composable Units of Be-
havior.” ECOOP 2003, European Conference on Object-Oriented Programming,
vol. 2743 of LNCS, Springer Verlag, pages 248–274, July, 2003.

14. B. Stroustrup. “The C++ Programming Language.” Addisson-Wesley, 2000.
isbn 0201889544.

15. D. Thomas and A. Hunt. “Programming Ruby: The Pragmatic Programmer’s
Guide.” Addison-Wesley, Reading, Massachusetts, 2001. isbn 0201710897.

16. O. Zendra, D. Colnet and S. Collin. “Efficient Dynamic Dispatch without Virtual
Function Tables. The SmallEiffel Compiler.” OOPSLA’97, 12th ACM Conference
on Object-Oriented Programming Systems, Languages and Applications, pages
125–141, 1997.

17. O. Zendra and D. Colnet. “Coping with aliasing in the GNU Eiffel Compiler im-
plementation.” Software Practice and Experience (SP&E), Vol. 31 No 6, pages
601–613, 2001. J. Wiley & Sons.

Recommending Library Methods: An Evaluation
of the Vector Space Model (VSM) and Latent

Semantic Indexing (LSI)�

Frank McCarey, Mel Ó Cinnéide, and Nicholas Kushmerick

School of Computer Science and Informatics, University College Dublin,
Belfield, Dublin 4, Ireland

{frank.mccarey, mel.ocinneide, nick}@ucd.ie

Abstract. The development and maintenance of a reuse repository
requires significant investment, planning and managerial support. To
minimise risk and ensure a healthy return on investment, reusable com-
ponents should be accessible, reliable and of a high quality. In this paper
we concentrate on accessability; we describe a technique which enables
a developer to effectively and conveniently make use of large scale li-
braries. Unlike most previous solutions to component retrieval, our tool,
RASCAL, is a proactive component recommender.

RASCAL recommends a set of task-relevant reusable components to a
developer. Recommendations are produced using Collaborative Filtering
(CF). We compare and contrast CF effectiveness when using two in-
formation retrieval techniques, namely Vector Space Model (VSM) and
Latent Semantic Indexing (LSI). We validate our technique on real world
examples and find overall results are encouraging; notably, RASCAL can
produce reasonably good recommendations when they are most valuable
i.e., at an early stage in code development.

1 Introduction

Successful software reuse has been to shown to improve software quality and
developer productivity whilst reducing defect density [1] and time-to-market
[2]. Despite this, reuse has not been adopted widely. Ye et al. [3] identifies the
significant cost and commitments required from an organisation to institute a
reuse program. To maximise reuse, minimise risk and ensure a healthy return
on investment, reusable components should be accessible, reliable and of a high
quality. In this paper we concentrate on effective tool support to increase the
accessibility and use of reusable libraries.

Poulin [4] suggests that the best libraries contain around 30, but in rare cases
up to 250, components. In reality however, it is possible that a library could
contain many thousand components; for example the Java 1.4 API library has
2,723 classes. To avail of all the reusable components in such a large library,

� Funding provided by the IRCSET under grant RS/2003/127.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 217–230, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

218 F. McCarey, M. Ó Cinnéide, and N. Kushmerick

it is essential that adequate tool support be provided. Indeed it has been the
inadequacy of conventional tools that has long hampered reuse. Frequently, the
time taken to locate a component in a particular repository and the subsequent
integration of that component with existing code will be perceived as too costly
and outweighing any potential reuse benefits.

The importance of reuse support tools is reflected in the shift from initial
software reuse research which focused on techniques to develop reusable compo-
nents and component libraries to a focus on supporting reuse through intelligent
storage and retrieval strategies, for example [5]. Each solution attempts to assist
developers in discovering or locating components in which they are interested.
These approaches share a common shortcoming though; the developer must ini-
tiate the retrieval process. Pragmatic issues such as time constraints, limited
conversancy with the library and lack of developer motivation will determine
the likelihood of a developer searching a library. In reality, if a developer be-
lieves a reusable component for a particular task does not exist or they do not
anticipate the need to reuse such a component, then they are less likely to query
the component repository; no retrieval schemes address this important issue.

In our work, we focus on complementing component retrieval with component
recommendation. We describe a technique that can produce recommendations
and we develop a reuse tool, named RASCAL, to investigate our approach. We
believe recommendations will assist and encourage developers in making full
use of large component libraries in an efficient manner and in turn will help to
promote software reuse. RASCAL is a proactive tool; no additional requirements
are placed on a developer and it is applicable to any existing code libraries.

Similar to many commercial recommenders, we produce a set of personalised
recommendations for an individual. However, unlike other domains where per-
haps a set of books or movies may be presented to a customer, RASCAL rec-
ommends a set of task relevant methods to a particular developer. Like most
recommendation tasks, RASCAL recommends software components that the
developer is interested in. Recommendation in our tool is complicated though
because we wish to recommend components which we believe the developer may
be unfamiliar with or unaware of. Another interesting distinction between our
recommender system and most mainstream recommenders is that we are trying
to predict, in order, the next likely items a developer will employ. Many typical
recommender systems only predict a vote for items which the user has not yet
tried. Our aim is to predict the next library method a developer should invoke;
it is quite likely that the developer will have invoked this method previously.

We compare two information retrieval approaches commonly used in text
retrieval and explain how these techniques can be adapted to our domain in
order to produce recommendations. Firstly, we employ a Collaborative Filtering
(CF) [6] algorithm using the popular Vector Space Model(VSM) [7]. We then
compare this approach with recommendations produced using CF and the more
advanced retrieval technique Latent Semantic Indexing (LSI) [7, 8, 9]. To validate
our work we produce over 32,000 recommendations for almost 1500 open-source
Java classes.

Recommending Library Methods 219

The remainder of this paper is organised as follows. In the next section we
review related works. An overview of RASCAL’s implementation is presented in
section 3. In section 4 we detail our recommendation techniques followed by a
comparative analysis of the experimental results in section 5. Finally we discuss
how RASCAL can be extended and draw general conclusions in section 6.

2 Related Work

We discuss related research in software reuse tool support and recommender
systems using information retrieval (IR), and we describe how IR techniques
can be adapted to support software reuse.

2.1 Reuse Tool Support

The development of reusable components and component libraries has been an
active research area for some time but this alone will not encourage reuse. “A
classified collection is not useful if it does not provide a search-and-retrieval
mechanism to use it” [10]. Mili et al. [11] classify traditional search and retrieval
methodologies into four categories, namely Keyword Search, Faceted Classifi-
cation, Signature Matching and Behavioral Matching. Each of these retrieval
schemes has a number of limitations that result in less than adequate retrievals.

More recently, several Semantic-Based retrieval tools have been proposed; typ-
ically while querying the repository the developer specifies component require-
ments using natural languages which are interpreted using a language ontology
as a knowledge base. Components in the repository will also have a natural lan-
guage description. Both the developer query and component descriptions are
formalised and closeness is computed. A set of candidate components can be
ranked based on their closeness value. Unlike the approaches mentioned above,
domain information, developer context and component relationships are all con-
sidered. Empirical results indicate that such schemes are superior to traditional
approaches [12, 13].

Drummond et al. [14] present the use of a learning software agent to support
the browsing of software libraries. The active agent attempts to learn the compo-
nent the developer is looking for by monitoring the developers’ normal browsing
actions. Based on experimental results, 40% of the time the agent identified the
developers’ search goal before the developer reached the goal. By providing non
intrusive advice that accelerates the search, this work is intended to complement
rather than replace browsing.

A major disadvantage with all of the retrieval techniques above is that the
developer must initiate the search process. However, in reality developers are
not aware of all available components. If they believe a reusable component for
a particular task does not exist then they are less likely to search the compo-
nent repository; none of the above schemes attempt to address this important
issue. Thus to effectively and realistically support component reuse it is tremen-
dously important that component retrieval be complemented with component
delivery/recommendation.

220 F. McCarey, M. Ó Cinnéide, and N. Kushmerick

Ye and Fischer [3] identify the cognitive and social challenges faced by soft-
ware developers who reuse and also present a tool named CodeBroker which ad-
dress many of these challenges. CodeBroker infers the need for components and
pro-actively recommends components, with examples, that match the inferred
needs. The need for a component is inferred by monitoring developer activities,
in particular developer comments and method signature. This solution greatly
improves on previous approaches, however the technique is not ideal. Reusable
components in the repository must be sufficiently commented to allow match-
ing and developers must also actively and correctly comment their code which
currently they may not do. Active commenting is an additional strain placed on
developers which is likely to make the use of CodeBroker less appealing. Notably,
Ye and Fischer remark that browsing and searching are passive mechanisms be-
cause they become only useful when a developer decides to make a reuse attempt
by knowing or anticipating the existence of certain components.

2.2 IR and Recommenders System

Sarwar et al. [15] describe a collaborative filtering recommender system with
Latent Semantic Indexing (LSI). Collaborative filtering works by matching cus-
tomer preferences to other customers in making recommendations. LSI is a tech-
nique commonly used to infer meaning or concepts in texts. Recommendations
are produced for two datasets: a movie dataset and a e-commerce dataset. Sev-
eral limitations of CF algorithms are identified such as sparsity, scalability and
synonymy. In an attempt to address these issues, LSI is applied; recommenda-
tions using this technique can be performed much faster than pure CF. Recom-
mendations using the LSI approach performed less well than pure CF for the
e-commerce dataset but in some cases performed better than CF on the Movie
dataset.

LSI is commonly used in natural language domains though some of the prop-
erties of source code, such as comments and identifiers, make it suitable for LSI
also. Marcus et al. [16] apply LSI to recover documentation-to-source-code links.
LSI is used to extract meanings from documentation and source code, this infor-
mation is then used to identify traceability links based on similarity measures.
The results of this approach are promising; the LSI technique has performed at
least as well as the traditional Vector Space Model (VSM) however much less
preprocessing of the source and documentation is required. This work follows on
from a LSI source code clone detection tool [17].

Our work is similar to a number of the techniques mentioned above. Like
CodeBroker [3], our goal is to recommend a set of candidate software components
to a developer; however our recommendations are not based on the developers’
comments/method signature. In contrast we produce recommendations using
collaborative filtering and LSI, akin to the work of Sarwar et al. [15] and Marcus
et al. [16], however in a different context. Like Drummond et al. [14] we use
an active agent to monitor the current developer though we are concerned with
pro-actively recommending suitable reusable components as opposed to assisting
the search process.

Recommending Library Methods 221

3 RASCAL Overview

RASCAL is currently implemented as a plugin for the Eclipse IDE, as illustrated
in figure 1. As a developer is writing code, RASCAL monitors the methods cur-
rently invoked and uses this information to recommend a candidate set of meth-
ods to this developer. Recommendations are then presented to the developer in
the recommendations view at the bottom right hand corner of the IDE window.
At present, RASCAL recommends methods from the Swing and AWT libraries.
An important consideration when implementing RASCAL is that recommenda-
tions must be produced in a real time environment; we discuss the implications
of this in section 5. Below we describe the main components of RASCAL, as
shown in figure 2.

We produce personalised recommendations for each individual Developer.
When producing a recommendation, we only consider the content of the current

Fig. 1. Prototype implementation of RASCAL

Fig. 2. RASCAL Overview

222 F. McCarey, M. Ó Cinnéide, and N. Kushmerick

active method which this developer is coding. Recommendations are produced
for and based on the current active method. For clarity in future sections, we
introduce two terms:
User. The current active method which a developer is implementing.
Item. A reusable library method, ignoring signature, which is utilised by a user.

The Code Repository contains code from previous projects, external li-
braries, open-source projects etc; in our work we used the Sourceforge [18]
repository. This repository will be continually updated as new classes/systems
are developed. From such a repository, we can extract information about what
reusable items exist and also knowledge about how these are used. The Usage
History Collector automatically mines the code repository to extract item us-
age histories for all users. This will need to be done once initially for each user
and subsequently when a new user is added to the repository. We extract this
information using the Bytecode Engineering Library [19]. Item usage histories
for all the users are then transformed into an item-user preference database, as
detailed in section 4.1, which can be used to establish similarities between two
users. Finally the Recommender Agent actively monitors the method that
the developer is coding. The agent attempts to establish a set of neighbouring
users who are similar to the active user; a set of ordered library methods is then
recommended to the active user based on the neighbouring users.

4 Recommendations

In this section, we describe two information retrieval techniques; namely Vec-
tor Space Model and Latent Semantic Indexing. We explain how either of the
retrieval techniques can be used by a Collaborative Filtering (CF) algorithm
to produce recommendations. CF using the vector space model is commonly
referred to as ‘pure’ CF; we will use this terminology in latter sections.

4.1 Information Retrieval

Vector Space Model. In text retrieval, the Vector Space Model (VSM) [7]
is one of the most commonly used methods for representing a document as a
vector of terms. A collection of documents is represented as a term-by-document
matrix where the [i, j]th element indicates the association between the ith term
and jth document. This association reflects the ith term occurrence in document
j. A term can represent different text units; most commonly a word. Each term
can also be individually weighted allowing that term to become more or less
important within a document or the entire document collection as a whole. We
discuss weighting schemes below. The similarity between any two documents
can be computed by determining the cosine of the angle formed by their vectors.
This cosine will fall in the range [-1, 1]. A cosine of 1 indicates two documents
are identical whereas -1 denotes no similarities.

In the context of our work, a document is representative of a user and a term
represents an item. Table 1 displays an example item-user matrix derived using

Recommending Library Methods 223

Table 1. Non weighted Item-User matrix created using VSM

Item User User User User User
U1 U2 U3 U4 U5

JButton:getText 1 1 0 0 1
JButton:setText 2 1 0 0 0
JButton:setEnabled1 0 1 0 1
JPanel:setLayout 0 0 3 4 0
JPanel:grabFocus 0 0 1 2 0

VSM. Given such a matrix, we can query this to find the set of users similar to
user x. Firstly we need to create a query vector representative of user x. If a
weighted scheme has been applied to the VSM matrix then each non-zero element
in the query vector should be a weighted frequency. We can now calculate the
similarity between user x and any other user by determining the cosine of the
angle formed by their vectors.

Latent Semantic Indexing. Latent Semantic Indexing (LSI) is a vector space
model approach to conceptual information retrieval. LSI is commonly used to
overcome the synonymy and polysemy problem; it captures underlying latent se-
mantic relationships between terms and documents. LSI achieves this by dimen-
sion reduction, selecting the most important dimensions from a term occurrence
matrix, such as the matrix in table 1, using Singular Value Decomposition (SVD).
In the natural language text domain, LSI has outperformed standard lexical re-
trieval techniques [20], classified texts [22] and been shown capable of extracting
significant levels of meaning from words, sentences and documents [23].

SVD [7] is a powerful technique in matrix analysis. Once we have created
a item-user m x n matrix A, as described earlier, a rank−k approximation of
that matrix (k < min(m, n)) to A, Ak is computed using SVD, as illustrated in
figure 3. The SVD of the Matrix A is defined as the product of three matrices;
A = UΣV T , where U represents the original row entries as vectors of derived
orthogonal factor values, V represents the original column entities in the same

Fig. 3. Illustration of SVD. The shaded areas of U and V , as well as the diagonal
line of Σ, represent Ak, the reduced dimension representation of the original item-user
matrix.

224 F. McCarey, M. Ó Cinnéide, and N. Kushmerick

way and Σ is a diagonal matrix containing scaling values such that when the
three matrices are multiplied, the original matrix is reconstructed. As illustrated
in figure 3, the first k columns of the U and V matrices and the first (largest)
k singular values of Σ are used to construct a rank−k approximation of A via
Ak = UkΣkV T

k .
Ak is the k−dimensional approximation of the original item-user matrix. By

reducing the dimensionality of this space, semantic relationships between users
are revealed and much noise is thought to be eliminated. Thus care must be taken
not to reconstruct A when choosing the dimensionality. The optimal dimension
is an open question and is usually determined experimentally; in our domain we
found 499 to be the most appropriate dimension. Like VSM, we can calculate the
similarity between any two users by determining the cosine of the angle formed
by their vectors.

Table 2. Original Item-User matrix with LSI SVD applied. The matrix has been
reduced in dimensionality from 5 to dimension 2 (A2 = U2Σ2V

T
2).

Item User User User User User
U1 U2 U3 U4 U5

JButton:getText 1.32 0.69 0.16 -0.11 0.53
JButton:setText 1.73 0.91 0.20 -0.16 0.69
JButton:setEnabled1.04 0.54 0.48 0.40 0.42
JPanel:setLayout 0.01 -0.05 2.93 4.05 0.06
JPanel:grabFocus -0.04 -0.04 1.29 1.79 0.01

In table 2 we briefly illustrate the power of the LSI SVD technique. We have
constructed a 2-dimensional approximation of the original item-user matrix in
table 1. Taking user u4 as an example, we see the original item values have
changed. Items setT ext and getT ext have now both taken on negative values
while setEnabled now has a value of 0.40. This new value for setEnabled can be
viewed as an estimate of how many times it would be used by each of an infinite
set of users who also use setLayout and grabFocus. The negative values ensure
user u4 will be less similar to users u1, u2 and u5 than may have previously been
the case.

Queries are performed on the reduced dimension user vector, Vk; a smaller
dimension can greatly increase query execution time. In the LSI model, queries
are formed into pseudo-documents that specify the location of the query in the
reduced document space [7]. Given a query vector q, identical to a VSM query
vector, the pseudo-document, q̂, can be represented by q̂ = qT UkΣ−1

k .
Thus, the pseudo-document consists of the sum of the item vectors (qT Uk)

corresponding to the terms specified in the query scaled by the inverse of the
singular values (Σ−1

k).

Weighting. Term weighting is frequently applied in natural language process-
ing; we investigate if such weighting is applicable to the source code domain.
The most simple weighting scheme is a local weight. For non zero frequencies,

Recommending Library Methods 225

this local weight is defined as tfij (frequency user i employs item j) dampened
by the log function: local weight = 1 + log(tfij). In text documents, this reflects
the fact that a term which appears in a document x times more than another
term is not x times more important.

We extend this simple local weighting scheme to log-entropy weighting as
recommended by [20]. Log entropy is local weighting times global weighting.
Global weighting is defined as 1−entropy. The log-entropy item weight for item
j by user i is:

log(1 + tfij) ∗
⎡
⎣1 −

∑
p ∈ Ij

(
tfpj

gfj
∗ log

tfpj

gfj

)

log(numUsers)

⎤
⎦ (1)

where Ij is the set of all users who use item j, tfij is the frequency of use of
item j by user i and global frequency gfj is the total number of times item j is
used in the complete user set.

4.2 Collaborative Filtering

The goal of a Collaborative Filtering (CF) algorithm is to suggest new items
or predict the utility of a certain item for a particular user based on the user’s
previous preference and the opinions of other like-minded users [6]. CF systems
are founded on the belief that users can be clustered. Users in a cluster share
preferences and dislikes for particular items and are likely to agree on future
items. Collaborative filtering algorithms are used in mainstream recommender
systems such as Amazon [24]. In our work we use CF to recommend a candidate
set of items to a user.

Fig. 4. Illustration of the k Nearest Neighbour formation. The similarity/distance be-
tween the target user query and all users in the item-user matrix is computed and k
closest users are chosen as neighbours. k = 8 in this example.

Recommendation Algorithm. Recommendations are produced by examining
the item-user matrix created using either VSM or LSI. Vote vij corresponds to
the vote by user i for item j. The mean vote for user i is calculated as follows:

vi =
1
|Ii|

∑
j∈Ii

vi,j (2)

where Ii is the set of items the user i has voted on. The predicted vote using CF
for the active user a on item j, cfaj, is a weighted sum of the votes of the other
similar users:

226 F. McCarey, M. Ó Cinnéide, and N. Kushmerick

cfaj = va + N
∑

i∈kNN

sim (a, i) (vi,j − vi) (3)

where weight sim(a, i) represents the correlation or similarity between the cur-
rent user a and each user i. kNN is the set of k nearest neighbours to the
current user, as illustrated in figure 4. A neighbour is a user who has a high
similarity value sim(a, i) with the current user. The set of neighbours is sorted
in descending order of weight. For experiments we used a value of k = 10. N
is the normalising factor such that the absolute values of the weights’ sum to
unity. From equation 3 we can now predict a users’ vote for any item in the
user-item preference database. Items are ranked based on their predicted vote
and the top n items are recommended to the user. In our experiments, we use a
value of n = 7.

We can calculate the similarity between the current user a and any user in the
item-user matrix, sim(a, i), by determining the cosine of the angle formed by
their vectors, as detailed in [25]. If we are using LSI, we can efficiently perform
vector similarity on the reduced user space, Vk.

5 Experiments

5.1 Dataset

We produced over 32,000 recommendations for 1410 Java classes taken from
over 60 GUI applications mined from Sourceforge [18]. Recommendations were
produced at the method level, and not the class level as in previous work [26]; in
total there was 3038 methods (users) or approximately just over 2 methods per
class. Further to this, each user had originally invoked on average 11 methods
(items). The items which we recommended were Swing and AWT methods; in
total there was 2407 items. Since we have the complete source code, we can
automatically evaluate the recommendations.

For each user, several recommendations were made. For example, if a fully de-
veloped method had 10 Swing invocations, then we removed the 10th invocation
from that user and a recommendation set was produced for the developer based
on the preceding 9 invocations. Following this recommendation, the 9th invo-
cation was removed from that user and a new recommendation set was formed
based on the preceding 8 invocations. This process was continued until just 1
invocation remained. Each recommendation set contained a maximum of 7 items.

5.2 Evaluation

Precision and Recall are the most popular metrics for evaluating information
retrieval systems. Precision is defined as the ratio of relevant recommended items
to the total number of items recommended; P = nrs/ns, where nrs is the number
of relevant items selected and ns is the number of items selected. This represents
the probability that a selected item is relevant. An item is deemed relevant if it is
used by the user for whom the recommendation is being sought. Recall is defined

Recommending Library Methods 227

as the ratio of relevant items selected to the total number of relevant items;
R = nrs/nr, where nrs is the number of relevant items selected and nr is the
number of relevant items. This represents the probability that a relevant item will
be selected. Several approaches have been taken to combine precision and recall
into a single metric. The F1 measure, initially introduced by van Rijsbergen [27],
combines both with an equal weight in the following form: F1 = 2PR/ (P + R).

It is particulary important that RASCAL recommends items in a relevant
order i.e. the invocation order. We will evaluate this using a simple binary Next
Recommended (NR) metric; NR = 1 if we successfully predict or recommend
the next method a developer will use, otherwise NR = 0.

5.3 Results

All results are displayed as a percentage value. A baseline result is included;
these were produced by recommending the top 5 most commonly invoked items
at each recommendation stage. We display the F1 metric combined with the
NR metric for several different dimensions k in figure 5(a). This is the average
F1 and NR result for various stages of recommendation, i.e. when x% of items
are known. Without applying LSI SVD, the original dimension of the user-item
matrix was 2407. We find that applying relatively low dimensions can produce

(a) (b)

(c) (d)

Fig. 5. (a) K dimension (b) Precision (c) Recall (d) Next Recommended (NR)

228 F. McCarey, M. Ó Cinnéide, and N. Kushmerick

reasonable recommendations. The optimal value for k, based on our dataset, is
499; this is the value used in the below experiments. We notice from figure 5(a)
that using term weighting has a negative effect on recommendations.

Figure 5(b) displays average Precision for four experiments; collaborative fil-
tering with and without term weighting using either LSI or VSM. The pure VSM
CF algorithm performs best, producing better results than the LSI model. Ex-
cluding, term weighting, the average CF VSM result is 36% compared with just
30% when using LSI. Precision, for all techniques, decreases as more items are
known; we discuss this in the following section. Both LSI and VSM produce sig-
nificantly better precision values than our baseline technique. We present Recall
in figure 5(c). Like precision, the CF VSM produces the best retrieval, averaging
at 52%. The result is followed closely by LSI where the average recall value is
50%. Term Weighting performs poorly. Figure 5(d) displays Next Recommended
(NR). Again, the CF VSM produces the best retrieval, averaging at 55%. LSI
performs well here with an average NR value of 52%.

5.4 Discussion

We make several interesting observations from these experiments. Firstly we note
that applying the log-entropy term weighting scheme to the item-user matrix has
a consistent negative effect on the recommendation results. This suggests that
items which are used by many users are as important as items which are used by
only a small number of users. To verify this, manual experimentation is required.
We also find that pure CF recommendations consistently outperform CF LSI
recommendations. However, it is important to recognise several other benefits
of using LSI; most notably performance efficiency which is crucial in a realtime
recommender. Using LSI with reduced dimension k = 499, RASCAL initialises
twice as fast and produces recommendations approximately three times faster
than the VSM approach. This will be important as we scale up our application.

Generally, we notice two different trends in precision and recall. Precision
tends to decrease as we know more information about a user while recall tends
to increase. This result perhaps requires clarification. Consider a user who uses
in total 10 items. When we make a recommendation for that user when they
have only used 1 item, there is a set of 9 possible items to recall. The chances
of recalling all relevant items is quite low and hence the recall result is low in
earlier recommendations. However, when this user has used 9 items and there
is only 1 possible item to recall, then the chances of this item being in the
recommendation set is quite high. In contrast, the more items we know about
the current user, the fewer there are to correctly recommend and hence precision
decreases in latter recommendations.

6 Conclusions

Just as people can be clustered in terms of their preferences for various items,
Java methods may also be clustered based on the methods they invoke. To

Recommending Library Methods 229

clusters methods, we investigated and compared two information retrieval tech-
niques, namely the vector space model and latent semantic indexing and found
the VSM most effective. Unlike many retrieval schemes, we found that prepro-
cessing or weighting of items negatively impacted retrieval. We also noted some
of the limitations with using VSM such as scalability and performance times,
and we explained how LSI can overcome these challenges.

Further work is needed to enhance RASCAL. Using LSI, we will investigate
significantly increasing the size of the library; we would expect this to improve
precision and recall whilst having a small impact on performance times. We
will also investigate the use of probability models to produce recommendations.
RASCAL offers unsolicited advice and we must be sensitive to this in our de-
livery of recommendations. We will extend our Eclipse plugin, complementing
and extending the existing context-sensitive list of methods recommended by
the Eclipse IDE. Our overall goal is to develop a recommender that seamlessly
integrates with the Eclipse IDE but more importantly allows reuse to become a
natural and convenient part of a developers daily routine.

Recommender systems are a powerful technology that can cheaply extract
knowledge for a software company from its code repositories and then exploit
this knowledge in future developments. We have demonstrated that RASCAL
offers real promise for allowing developers discover and easily access reusable
library components. When little information is known about the user we can
nevertheless make reasonably good recommendations and it is our belief that
future work will strengthen both recommendation accuracy and performance.

References

1. Mohagheghi, P., et al.: An empirical study of software reuse vs. defect-density
and stability. In: ICSE ’04: Proceedings of the 26th International Conference on
Software Engineering, Washington, DC, USA, (IEEE Computer Society) 282–292

2. Yongbeom, K., Stohr, E.: Software reuse: Survey and research directions. Man-
agement Information Systems 14(4) (1998) 113–147

3. Ye, Y., Fischer, G.: Reuse-conducive development environments. International
Journal of Automated Software Engineering 12 (2005) 199–235

4. Poulin, J.: Reuse: Been there done that. Communications of the ACM 42(5) (1999)
5. Inoue, K., et al.: Component rank: relative significance rank for software component

search. In: ICSE ’03: Proceedings of the 25th International Conference on Software
Engineering, Washington, DC, USA, IEEE Computer Society (2003) 14–24

6. Sarwar, B.M., Karypis, G., Konstan, J.A., Reidl, J.: Item-based collaborative
filtering recommendation algorithms. In: World Wide Web. (2001) 285–295

7. Letsche, T.A., Berry, M.W.: Large-scale information retrieval with latent semantic
indexing. Inf. Sci. 100(1-4) (1997) 105–137

8. Landauer, T., Foltz, P., Laham, D.: An introduction to latent semantic analysis.
Discourse Processes 25 (1998) 259–284

9. Deerwester, S., et al.: Indexing by latent semantic analysis. Journal of the American
Society for Information Science 41 (1990) 391–407

10. Prieto-Diaz, R., Freeman, P.: Classifying software for reuse. IEEE Software 4(1)
(1987) 6–16

230 F. McCarey, M. Ó Cinnéide, and N. Kushmerick

11. Mili, A., Mili, R., Mittermeir, R.T.: A survey of software reuse libraries. Annals
of Software Engineering 5 (1998) 349–414

12. Sugumaran, V., Storey, V.C.: A semantic-based approach to component retrieval.
SIGMIS Database 34(3) (2003) 8–24

13. Girardi, M., Ibrahim, B.: Using english to retrieve software. Journals of Systems
and Software 30(3) (1995) 249–270

14. Drummond, C.G., Ionescu, D., Holte, R.C.: A learning agent that assists the
browsing of software libraries. IEEE Trans. Softw. Eng. 26(12) (2000) 1179–1196

15. Sarwar, B.M., et al.: Application of dimensionality reduction in recommender
systems–a case study. In: Proceedings of ACM WebKDD Workshop. (2000)

16. Marcus, A., Maletic, J.I.: Recovering documentation-to-source-code traceability
links using latent semantic indexing. In: ICSE ’03: Proceedings of the 25th In-
ternational Conference on Software Engineering, Washington, DC, USA, IEEE
Computer Society (2003) 125–135

17. Marcus, A., Maletic, J.I.: Identification of high-level concept clones in source code.
In: ASE ’01: Proceedings of the 16th IEEE International Conference on Automated
Software Engineering, Washington, DC, USA, IEEE Computer Society (2001) 107

18. Ebert, J.: Storm - a user story tool. http://xpstorm.sourceforge.net . (2002)
19. Apache: Apache software foundation - bytecode engineering library (2002-2003).

http://jakarta.apache.org/bcel/index.html . (2003)
20. Dumais, S.: Improving the retrieval of information from external sources. Behavior

Research Methods, Instruments and Computers 23(2) (1991) 229–236
21. Dumais, S.: Latent semantic indexing (lsi) and trec-2. The Second Text REtrieval

Conference (TREC2), National Institute of Standards and Technology Special Pub-
lication 500-215. (1994) 105-116

22. Zelikovitz, S., Hirsh, H.: Using lsi for text classification in the presence of back-
ground text. In: CIKM ’01: Proceedings of the tenth international conference on
Information and knowledge management, New York, ACM Press (2001) 113–118

23. Berry, M.: Large scale singular value computations. Int. Journal of Supercomputer
Applications 6 (1992) 13–49

24. Bezos, J.: Amazon.com plc. seattle, wa 98108-1226, usa www.amazon.com. (2004)
25. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms

for collaborative filtering. In: Proceedings of the Fourteenth Annual Conference on
Uncertainty in Artificial Intelligence. (1998) 43–52

26. McCarey, F., Cinnéide, M.O., Kushmerick, N.: Knowledge reuse for software reuse.
In: Proceedings of the 17th International Conference on Software Engineering and
Knowledge Engineering. (2005)

27. van Rijsbergen, C.: Information Retrieval. Butterworths, London (1979)

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 231 – 245, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Improving Extensibility of Object-Oriented Frameworks
with Aspect-Oriented Programming

Uirá Kulesza1, Vander Alves2, Alessandro Garcia3, Carlos J.P. de Lucena1,
and Paulo Borba2

1 PUC-Rio, Computer Science Department, Rio de Janeiro - Brazil
{uira, lucena}@inf.puc-rio.br

2 Informatics Center, Federal University of Pernambuco, Recife - Brazil
{vra, phmb}@cin.ufpe.br

3 Lancaster University, Computing Department, Lancaster - United Kingdom
garciaa@comp.lancs.ac.uk

Abstract. Object-oriented frameworks are nowadays a common and useful
technology used in the implementation of software system families. Despite
their benefits, over the last years many researchers have described the
inadequacy of object-oriented mechanisms to address the modularization and
composition of many framework features, thus reducing the extent to which a
framework can be extended. The crosscutting nature of many framework
features is identified as one of the main causes of these problems. In this paper,
we analyze how aspect-oriented programming can help to improve the design,
implementation, and extension of object-oriented frameworks. We propose the
concept of Extension Join Points (EJPs) as a way of designing and documenting
existing crosscutting extension points. EJPs improve framework extensibility,
including superior composability of the framework core functionality with other
modules or frameworks. Four case studies of frameworks from diverse domains
are presented to illustrate our proposal. This paper also discusses lessons
learned on the application of our approach to the development and extension of
these frameworks.

1 Introduction

Framework technology plays nowadays a central role in the development of software
product lines. Object-oriented (OO) frameworks enable systematic reuse-in-the-large
by modularizing and composing one or more recurring features of a given domain,
and by offering predictable extension options to the target applications. Framework
extension is achieved in different ways, ranging from the selection of optional and
alternative features to its integration with other complementary components and
frameworks. However, some researchers [2, 18, 19] have recently described the
inadequacy of OO mechanisms to address the modularization and composition of
many framework crosscutting features, thus reducing the framework variability and
integrability. This crosscutting phenomenon manifests itself in several manners: both
in the core and variable parts of a framework, and also in the features being integrated
as the system evolves.

232 U. Kulesza et al.

Hence all framework benefits are hindered if there is no systematic approach to
support the encapsulation and extension of crosscutting framework features through
their development and instantiation processes. With the emergence of aspect-oriented
programming (AOP) [12], it is important to investigate the suitability of AOP
mechanisms to promote enhanced variability and integrability of OO frameworks.
AOP supports the encapsulation of crosscutting features into new modular units – the
aspects – and their composition through the notion of join points. Recent work [1, 9,
14, 16] has started to explore the use of aspects to improve the isolation of
crosscutting features encountered in the design of frameworks and product lines.
Other authors have also examined the influence of AOP on different software
integrability scenarios, such as COTS [17] and design patterns [3, 11]. However, there
is no methodological foundation to support framework designers while using aspect-
oriented mechanisms to improve the variability and integrability of their frameworks
in the presence of crosscutting features.

This work briefly revisits well-known problems relative to OO framework
modularity (Section 2). We then perform a systematic analysis of how AOP can help
to address them, and enhance the framework implementation and extensibility. In
particular, we present a systematic approach, based on the concept of Extension Join
Points (EJPs), as a unified way of designing and documenting existing crosscutting
extension points (Section 3). EJPs provide new means for extending framework core
functionality, introducing optional and alternative crosscutting features, and
integrating the framework elements with other components and frameworks. We
further present a categorization of framework aspects that support the encapsulation
of distinct types of crosscutting features. We describe four case studies of frameworks
from different domains to illustrate the applicability of our proposal (Section 4).
Lessons learned on the design and implementation of these frameworks are also
discussed (Section 5).

2 Modularization Problems in OO Frameworks

We now briefly describe three major problems, previously discussed by other authors,
showing how they negatively affect framework extensibility from different
perspectives. We also illustrate representative symptoms of these problems in the
design of the JUnit framework, which is a classical example in the framework
literature.

Complexity of Object Collaboration. An OO framework defines a set of abstract and
concrete reusable classes implementing a software family architecture. Complex
collaborations between these classes must be implemented. These collaborations
represent the common functionalities shared by several applications in the framework
domain. Each framework class in general has to play different roles, which means that
they need to collaborate with different classes in order to implement their different
responsibilities [5, 22]. Therefore, understanding and maintaining the framework
classes become a difficult task. Moreover, further introductions of framework
variations and compositions with other software modules are hindered, as each class
role cannot be treated as a separate framework feature as the framework evolves.

 Improving Extensibility of Object-Oriented Frameworks 233

In the JUnit framework, for example, the primary purpose of the main classes is to
execute a set of test suites and cases, and return a testing report. However, they have
to play an additional role: a different feature related to the tracking of the execution of
test cases and suites by those classes is superimposed in their code in order to notify
GUI classes about the execution state (started, failed, ok, finished) of test cases.

Riehle et al [22] analyze the problems of complex object collaborations and their
impact on framework design and integration. They show how the complexity of an
OO framework increases when its internal classes play different roles. The authors,
however, propose the use of role modelling [22], which only partially addresses the
plastering of multiple roles into classes as it is focused on the design level.

Inability to Modularize Framework Optional Features. Batory et al [2] discuss the
difficulties of the framework technique to modularize optional features. An optional
feature is a framework functionality that is not used in every framework instance.
They illustrate some alternatives developers typically adopt to deal with this problem,
such as: (i) to implement the optional feature in the code of concrete classes during
the framework instantiation process; and (ii) to create two different frameworks, one
addressing the optional feature and the other one without it. Accordingly, many
framework modules need to be replicated just for the sake of exposing optional
features. To summarize, the authors argue that frameworks are usually “overfeatured”
[5], which means that several non-general functionalities can inevitably be part of the
framework.

An analysis of available frameworks (such as JUnit and JHotDraw) makes it
evident that the most common practice adopted in the implementation of framework
optional features is the use of inheritance mechanisms to define additional behavior in
the framework classes. These classes represent an existing framework feature to be
extended. In the JUnit framework, for example, inheritance relationships are used to
define a specific kind of test case as well as additional extensions to test cases and
suites.

Crosscutting Feature Compositions in Frameworks Integration. Mattsson et al [18,
19] have analyzed the problems and causes related to the integration of OO
frameworks. For each problem presented, they have also proposed several OO
solutions. A combination of two frameworks, as described by the authors, can also be
seen as the composition of a new set of features (represented as a framework) in the
structure of another framework. As an example, suppose we need to extend the JUnit
framework to send specific failures that occur to software developers. A specific test
failure report could be send by e-mail to different software developers, every time a
specific and critical failure happens. Imagine we have available an e-mail framework
to support our implementation. The problem here is how we could implement this
functionality in the JUnit framework. It involves the integration of the JUnit and e-
mail frameworks. This composition could be characterized as crosscutting since we
are interested to send a failure report by e-mail during the execution of the tests.

We have analyzed [16] the framework integration solutions presented by Mattson
et al [18, 19]. Many of their OO solutions are invasive and bring several difficulties
to the implementation, understanding and maintenance of the framework composition
code. Our analysis was based on a case study with feature compositions involving
four OO frameworks of varying complexity and addressing concerns from distinct

234 U. Kulesza et al.

horizontal and vertical domains [6]. The analysis has showed that from the 9 solutions
described by those authors, 6 solutions have poor modularity and a crosscutting
nature, and require invasive internal changes in the frameworks code.

3 Improving Framework Extensibility with Aspects

This section presents our approach to design and implement OO frameworks with
aspects. Our approach deals with the framework modularization problems presented
previously (Section 2.1) by using AOP and the notion of extension join points (EJPs).
EJPs also support the disciplined specification of additional opportunities for
framework extensions. Sections 3.1 – 3.3 present the proposed approach by respect-
tively describing the central concept of EJPs, describing different uses of aspects to
improve framework extensibility, and presenting the achieved benefits. Section 3.4
presents an example of the approach applied to the JUnit framework.

3.1 Extension Join Points

The extension points or hot-spots of an OO framework are typically implemented as
abstract classes or interfaces [7]. They allow extending the common collaboration
behavior provided by the framework by providing specific implementations for their
abstract methods. One of the difficult problems of framework development is that it
requires dealing with many common and variable features pertaining to a domain. We
can thus notice an increase on framework complexity and on many modularization
and composition problems, such as those presented in Section 2.

In our approach, an OO framework specifies and implements not only its common
and variable behavior using OO classes, but it also exposes a set of extension join
points (EJPs) which can be used to also extend its functionality. The idea of EJPs is
inspired by Sullivan et al’s work [24, 10] on specification of crosscutting interfaces
(XPIs). Similar to XPIs, EJPs establish a contract between the framework classes and
a set of aspects extending the framework functionality. However, unlike XPIs, EJPs
are adopted as a means to increase the framework variability and integrability. Thus,
we propose to use the XPI concept in the context of framework development. EJPs
can be used to three different purposes:

(i) to expose a set of framework events that can be used to notify or to facilitate a
crosscutting integration with other software elements (such as, frameworks or
components);

(ii) to offer predefined execution points spread and tangled in the framework into
which the implementation of optional features can be included;

(iii) to expose a set of join points in the framework classes that can have different
implementations of a crosscutting variable functionality.

In this context, EJPs document crosscutting extension points for software deve-
lopers that are going to instantiate and evolve the framework. They can also be
viewed as a set of constraints imposed on the whole space of available join points in
the framework design, thereby promoting safe extension and reuse. A key
characteristic of EJPs is that framework developers and users do not need to learn

 Improving Extensibility of Object-Oriented Frameworks 235

totally new abstractions to use them, as they can mostly be implemented using the
mechanisms of AOP languages (Section 5.1).

3.2 Framework Core and Extension Aspects

Our approach promotes framework development as a composition of a core structure
and a set of extensions. A framework extension can be: (i) the implementation of
optional or alternative framework features; or (ii) the integration with an additional
component or framework. The composition between the framework core and the
framework extensions is realized by different types of aspects. Each aspect defines a
crosscutting composition with the framework by means of its exposed EJPs. Next, we
describe the main elements of our approach:

 (i) framework core – implements the mandatory functionality of a software family.
Similar to a traditional OO framework, this core structure contains the frozen-spots
that represent the common features of the software family and hot-spot classes that
represent non-crosscutting variabilities from the domain addressed;

(ii) aspects in the core – implement and modularize existing crosscutting concerns
or roles in the framework core. They represent the traditional use of AOP to simplify
the understanding and evolution of the framework core;

(iii) variability aspects – implement optional or alternative features existing in the
framework core. These elements extend the framework EJPs with any additional
crosscutting behavior;

(iv) integration aspects – define crosscutting compositions between the framework
core and other existing extensions, such as an API or an OO framework. These
elements also rely on the EJPs specification to define their implementation.

Figure 1 shows the design of an OO framework with aspects following our
approach. As we can see, both variability and integration aspects can only act in the
EJPs provided by the framework and they must respect all the constraints defined by
them. This brings systematization to the framework extension and composition with
other artifacts.

Framework Core

Hot Spots

Hot Spot Instances

Frozen Spots
EJPs

EJPs
<<crosscuts>>

Integration
Aspect

Aspect

Framework
or API

<<calls>>

Variability
Aspects

Aspect

<< uses >>

<<crosscuts>>

<<uses>> <<uses>>

Aspect

Legend:
Class

Aspect
Aspect with EJPs

Framework Core

Hot Spots

Hot Spot Instances

Frozen Spots
EJPs

EJPs
<<crosscuts>>

Integration
Aspect

Aspect

Framework
or API

<<calls>>

Variability
Aspects

Aspect

<< uses >>

<<crosscuts>>

<<uses>> <<uses>>

Aspect

Legend:
Class

Aspect
Aspect with EJPs

Fig. 1. Elements of our Framework Development Approach

236 U. Kulesza et al.

3.3 Benefits

Table 1 describes the benefits brought by each type of aspect in our framework
development approach. It also indicates how the core, variability, and integration
aspects address each of the modularization problems in framework development and
evolution discussed in Section 2. As pointed out in the table, the use of internal
framework aspects also has a positive impact on the framework variability and
integrability. They facilitate the specification of EJPs because core aspects promote
modularization of the internal class roles. Therefore, they offer additional join points
to be exploited in extension scenarios.

Table 1. Framework Development Approach Elements

Approach Element

Benefits

Modularization
Problem Addressed

Aspects in the Core

- Simplify the understanding and
evolution of the framework core

• Modularize existing crosscutting
concerns or roles in the framework core.

- Facilitate the design of EJPs

Crosscutting Roles
and Concerns

Extension Join Points

- Systematize the framework extension
and composition by promoting safe
framework reuse

• Enable the composition between
framework core and extensions.
• Encapsulate the framework and
exposes only proper join points.

Tight Coupling
between Core and

Extensions

Variability Aspects

- Facilitate the framework reuse and
extension.

• Modularize optional and alternative
framework features.
• Make it possible to plug and unplug
optional or alternative features.

Optional or
Alternative Features

Integration Aspects

- Facilitate the framework reuse and
composition.

• Modularize the framework
composition with other extensions.
• Make it possible to plug and unplug
crosscutting framework composition.

Crosscutting
Framework

Compositions

3.4 JUnit Example

This section illustrates the use of the proposed approach in the context of the JUnit
framework. Although JUnit presents a well-modularized architecture, we have found
some modularization problems [15] hindering its future extension/evolution. In the
context of other complex and large-scale frameworks, these problems can cause
architecture erosion after a while. Due to space limitation, we have briefly mentioned
JUnit problems in Section 2.

 Improving Extensibility of Object-Oriented Frameworks 237

The main purpose of the JUnit framework is to allow the design, implementation
and execution of a set of test suites and cases for any Java application. It is especially
useful to implement unit tests, but it can also be used to implement integration tests
between modules. The JUnit framework implementation is composed of the following
components:

(i) Tester: defines the framework classes responsible for specifying the basic
behavior to execute test cases and suites. The main hot-spot classes available in this
component are TestCase and TestSuite. The framework users extend these classes in
order to create specific test cases to their applications;

(ii) Runner: this component is responsible for offering an interface to start and
track the execution of test cases and suites. JUnit provides three alternative
implementations of test runners: a command-line based user interface (UI), an AWT
based UI, and a Java Swing based UI;

(iii) Extensions: responsible for defining functionality extending the basic behavior
of the JUnit framework. Examples of available extensions include: a test suite to
execute tests in separate threads, a test decorator to run tests repeatedly, and a test
setup class that allows specifying initial and final configuration of specific tests.

Following our approach, in the JUnit OO framework we can consider the classes of
the Runner and Tester components as the framework core (Figure 2). They provide
the main functionalities needed to execute the test cases and suites, as follows: (i) the
definition of a test case or suite to be executed; (ii) the execution of a selected test
case or suite; and (ii) the collection and visual presentation of the test results. The
JUnit core offers three abstract classes (TestCase, TestSuite and BaseTestRunner)
representing traditional extension points of the framework.

The JUnit framework core must expose its extension join points in order to allow
the composition of crosscutting extensions into its basic functionality. Figure 2
presents the TestExecutionEvents aspect, which exposes a set of EJPs of the JUnit
framework. It exposes the following join points: (i) test case execution; (ii) test suite
execution; and (iii) initialization of test runners. We have chosen these join points
because they represent relevant events in the test execution functionality of the JUnit
core that can be of interest to framework extensions.

Different extensions can be implemented to add new functionality into the JUnit
EJPs. We can assume that the tracking of the test case execution by the Runner
component is not initially addressed by the framework core. It is necessary to codify
an aspect in the core working as an observer. Since this is an aspect in the core, it can
be codified to intercept directly framework classes (such as presented in Figure 2) or
it could reuse the join points exposed by the TestExecutionEvents aspect mentioned
above and notify the instance of the Runner executing about the current state of the
test case (initiated, finalized, failed). Figure 2 shows three aspects (Observer-
TestExecution, AWTUIObserver, TextUIObserver) addressing this
functionality considering different Runner classes available.

The implementation of the functionality of the original JUnit Extension component
can also benefit from its EJP. Different variability aspects, as presented in Figure 2,
can be codified to add the testing extensions into the JUnit EJPs, such as: (i) to run
test cases or test suites repeatedly (RepeatAllTest aspect); (ii) to execute them in
separate threads (ActiveTestSuite aspect); and (iii) to introduce some additional

238 U. Kulesza et al.

behavior before or after the test case or suite (TestCaseDecorator and TestSuite-
Decorator aspects). In this case, we could implement easily these aspects by reusing
the join points exposed in the aspect TestExecutionEvents. It is also possible to codify
aspects to affect just specific test cases or suites defined to test an application. Finally,
the JUnit EJPs can also be used to compose it with other OO frameworks. Figure 2
shows, for example, the MailNotification integration aspect responsible for
monitoring the test execution, building specific test reports and sending them by e-
mail to specific developers. An e-mail framework could be composed with the JUnit
framework to provide that functionality by means of an integration aspect.

Fig. 2. Aspect-Oriented Design of the JUnit Framework

core

variability aspects

integration aspects

Test

+ run()

(f rom f ramework)

<<Interface>>

TestCase

+ run() : TestResult
+ run(result : TestResult) : void

(f rom framework)

TestSuite

+ addTest()
+ run()

(f rom f ramework)

TestResult

run()
+ addFailure()

(f rom f ramework)

RepeatedTests
(f rom extensions)

<<aspect>>

ActiveTestSuite
(f rom extensions)

<<aspect>>
TestSuiteDecorator

(f rom extensions)

<<aspect>>
TestCaseDecorator

(f rom extens ions)

<<aspect>>

RepeatAllTests
(f rom extens ions)

<<aspect>>

Bas eTes tRunner
(f rom runner)

ObserverTestExecution
(f rom runner)

<<aspect in the core>>

TestRunner
(f rom textui)

TextUIObserver
(f rom runner)

<<aspect in the core>>

TestRunner
(f rom awtui)

AWTUIObserver
(f rom runner)

<<aspect in the core>>

TestExecutionEvents

+ pointcut testSuitesExecution()
+ pointcut testSuiteIndividualExecution()
+ pointcut testCaseExecution()
+ pointcut testExecutionInitialization()

<< aspect with ejps>>

mail framework

TestReport

MailFrameworkFacade
(f rom mail f ramework)

MailNotification
(f rom integration aspects)

<<aspect>>

0..*0..*

<<crosscut>>

<<crosscut>>

<<uses>>

<<uses>>

<<crosscut>>

<<cros scut>> <<crosscut>>

<<uses>>

 Improving Extensibility of Object-Oriented Frameworks 239

4 Case Studies

Our approach has emerged from our experience in different domains, through a
process of continuous interaction and refinement between case studies and the
approach itself. In this context, the approach was employed in the development of
frameworks in the following domains: (i) J2ME games [1]; (ii) multi-agent systems
(MASs) [9, 14]; and (iii) measurement support for product quality control [16]. Table 2

Table 2. Case Studies Overview

Domain Framework Core EJPs Variability and
Integration Aspects

J2ME Games

Game engine, a state
machine defining the game
core structure and
workflow, including:
(i) handling of user
interaction and elapsed time:
(ii) game actors state update;
(iii) game actors rendering;
(iv) game screen
management.

- Image initialization
and usage;
- Drawing of specific
images;
- Game startup and
changing screens.

Variability and
Integration aspects were
defined to implement:
(i) croma optional
feature;
(ii) alternative drawing
feature;
(iii) optional image
loading optimization
feature.

MASs

Our AspectT agent
framework implements the
core internal structures and
behaviors of autonomous
software agents, including:
(i) the knowledge elements –
beliefs, actions, plans, goals;
(ii) the management of goals
and plan execution;
(iii) the thread scheduling;
(iv) adaptation of agent
knowledge.

- Reception and
sending of messages;
- Reception of
external stimulus;
- Initialization of
goals;
- Exceptions in plan
executions;
- Initialization and
finalization of
plan/action
executions.

Integration aspects were
defined to integrate the
framework core with:
(i) 2 alternative inter-
agent communication
platforms;
(ii) 2 alternative code
mobility platforms;
Variability aspects were
included to enhance the
agent behavior with:
(i) optional learning
capabilities;
(ii) different roles and
collaboration protocols.

Measurement for
Quality Control

The Measurement
Framework defines a
process for quality control
composed of the following
steps:
 (i) product data collection
phase;
 (ii) data analysis and
product categorization
phase;
 (iii) actuation phase –
actions are performed over
the products according to
their categorization.

- Activation of
triggers (event of
product processing
initialization);
- Activation of
sensors (event of
product data
collection);
- Activation of
actuators (event of
product processing
finalization).

Different integration
aspects were defined to
compose the
measurement
framework with other
ones, as follows:
(i) a GUI framework
presenting visually
information about the
measurement process;
(ii) a Statistical
framework calculating
statistical data about the
measurement process;
and
(iii) a Persistence
frame-work storing
infor-mation about the
items processed and the
statis-tical data.

240 U. Kulesza et al.

summarizes the framework core, EJPs, variability and integration aspects of the three
case studies. Due to space limitation, in this section we describe our experience only
in the domain of J2ME Games. For a complete description of the implementation of
EJPs and framework extensions for these case studies, please refer to [15].

4.1 J2ME Games

J2ME games are mainstream mobile applications of considerable complexity [1].
Their overall structure and behavior are defined by a framework known in this
domain as the game engine. Essentially, this is a state machine whose state change is
driven by elapsed time and user input through the device keypad. State changes affect
the state of various drawing objects (game actors) and how they interact. Then, these
objects are drawn again after such state changes. Typical hot-spots of this framework
include some abstract classes defining basic drawing capability for game actors.

The game engine must also expose its EJPs in order to allow the composition of
crosscutting extensions in its basic functionality. Some interesting EJPs are the
following: (i) how images are initialized and used; (ii) drawing of specific images;
(iii) game startup and changing screens. We have chosen these EJPs because they
represent relevant events that can be of interest when extending the game engine core
workflow.

Based on these EJPs, we provide implementations for optional and alternative
features. For example, EJP (i) can be composed with a variability aspect to implement
the croma optional feature (decorative images of the game screen, for example clouds
rolling in the background). This feature is optional in the product line comprising a
number of devices, since some are resource-constrained and thus this feature should
not be selected for such devices. Accordingly, in the game assets, such feature
amounts to images files in the resource directory; in the code, they are declared, and
loaded into fields, which are updated in their state, and then drawn, this comprising a
number of different code blocks in different classes. Therefore, the implementation of
this optional feature is crosscutting. By exposing this crosscutting nature within EJPs
and implementing the feature within a variability aspect, we provide an appropriate
way to document this crosscutting in design and to implement it modularly.

As another example, EJP (ii) can be composed with integration aspects to imple-
ment the alternative features for drawing some images. Specific images may be drawn
at various locations and, under certain circumstances, may be transformed (rotated,
flipped), which may be accomplished by using fresh new images or by transforming
the original ones by calling device proprietary drawing API. By exposing these EJPs
and composing them with integration aspects, we provide modular implementation for
the interaction between the core game and the device-specific API.

Lastly, EJP (iii) can be composed with variability aspects to implement an optional
optimization feature: images are loaded on demand when changing to the next screen.
This is also a policy for resource-constrained devices; other devices just load all
images at once during game startup. By exposing these EJPs, we can explicitly show
where the optional optimization might be composed.

 Improving Extensibility of Object-Oriented Frameworks 241

5 Discussion and Lessons Learned

This section provides some discussion and some lessons learned based on our
experience on applying our proposed approach (Section 3) to several frameworks
[1, 3, 9, 14, 15, 16], such as those ones described in Section 4.

5.1 EJPs Documentation

An important issue to consider when developing the framework EJPs is how to
document them. The way they are documented can help developers to implement
more easily their framework extensions. Different ways of documentations can be
used which complement each other. We advocate the use of a combination of
programming language, textual and visual documentation to make EJPs explicit.

The XPI proposed approach presents the documentation of exposed join points of
an application using AspectJ [13] source code directly [10] or a textual representation
of elements composing the XPI [24]. The documentation based on AspectJ source-
code defines aspects declaring public pointcuts that expose the join points of an
application. Many invariants that must be respected by the extensions can also be
codified in AspectJ to guarantee their automatic verification [10]. This way of
documentation for the EJPs is very useful because developers that are interested in
extending the framework can directly reuse those public pointcuts. Besides, the
syntactic specification of the invariants also helps to control inappropriate interactions
between the framework and extensions in the EJPs. In the JUnit example in Section
3.4, the TextExecutionEvents aspect represents the syntactic specification of the
framework EJPs specifying a set of public pointcuts related to the testing execution in
the framework core. The documentation of EJPs based on source code can be
complemented with textual based representation. Sullivan et al [24] present a XPI
textual representation which can also be used to document our EJPs.

Although Sullivan et al [10, 24] XPI proposal can be useful to document the EJPs,
new properties must also be considered in their documentation. A framework
crosscutting extension can be codified to affect only join points of specific hot-spot
instances. In the JUnit framework, for example, only specific test cases or test suites
of a framework instance can be considered to be extended. In order to address these
situations, we also need to document specific join points that will be completely
available only after the framework instantiation. The pointcuts specifying these join
points need be customized with the name of framework instance classes. Thus, it is
necessary to distinguish between EJPs allowing changes to the framework internal
classes and those ones allowing direct extensions of concrete implementations of hot-
spots in a framework instance. The source code based documentation, for instance,
can present examples of how the pointcuts that affect directly hot-spot classes can be
adapted to affect only specific hot-spot instances.

Many OO framework documentation techniques (such as, cookbook approaches)
emphasize the use of examples to show how to instantiate the framework extension
points. In the case of EJPs, we believe it is also fundamental to present examples in
how they can be used to compose any additional functionality in the framework. First,
because AOP has not became a widely adopted technology yet. Second, because
crosscutting composition is supposed to be more difficult to understand than compo-
sition based on inheritance. Section 5.2 explores the documentation of examples of

242 U. Kulesza et al.

framework crosscutting extensions using implementations based on traditional design
patterns. Finally, the documentation of EJPs could also offer any visual representation
to make them more explicit. Currently, we are analyzing if it is possible to use
aSideML crosscutting interfaces [4] to offer a UML-based notation to represent the
EJPs.

5.2 Implementation of Variability and Integration Aspects

In our approach, all framework crosscutting extensions are attached to the framework
core using integration and variability aspects. Each aspect introduces a crosscutting
behavior in a specific set of EJPs. The aspects play a specific role related to the way
they extend the framework. They can, for example, play the role of observers of
internal framework events to notify any external OO extension. They can mediate the
communication between the framework classes and other OO extensions on particular
EJPs. They can also decorate EJPs with new and optional implementation of features.
Thus, many aspects can play the role of traditional design patterns [8] with the aim of
extending the framework core.

Hanneman & Kiczales [11] have demonstrated how the implementation of many
design patterns can be well modularized using aspects. The implementation of many
integration and variability aspects can follow the Hanneman & Kiczales’ guidelines
based on the played role by the framework extension being composed. In the JUnit
example showed in Figure 2, the variability aspects decorate the execution of test
suites and test cases with new optional features, whereas the MailNotification
integration aspect mediates the communication between the framework testing
elements and a mail framework. Examples of aspect implementations based on design
patterns can work as an effective documentation of the available ways to extend the
EJPs.

Other issues relative to the implementation of variability and integration aspects
deserve attention but are not explored in this paper due to space limitation, such as: (i)
the composition of aspects on the same EJPs – since different aspects can add new
functionality on the same EJPs, it is necessary to determine if there is any execution
order of them or any conflict on their composition on the same points; and (ii) the
modularization of the common and specific code of aspects [16] – also a clear
separation between the extensions affecting directly the framework and those
affecting only specific framework instances could be done.

5.3 Finding EJPs

One of the main difficulties in the development of OO frameworks is to find their
flexible points or hot-spots. Domain analysis methods [6] and experience on the
development of applications in the same domain are techniques used to find
commonalities and variabilities of a framework. EJPs can also be considered
framework hot-spots. They represent flexible points in the execution of specific
framework scenarios that can have a crosscutting extension inserted. EJPs are
modeled as events or transition states occurring during the execution of the
framework functionalities. Thus, these events or transitions states are dependent on
the domain and functionalities being addressed by the framework. Table 2 shows a set
of EJP examples derived from our case studies in different domains.

 Improving Extensibility of Object-Oriented Frameworks 243

While some heuristics to find EJPs such as the identification of relevant events and
transition states in the framework functionalities can help, we believe that current
domain analysis methods and techniques need to be extended to support the modeling
of crosscutting relations between features in early development stages. This can
anticipate the modeling of EJPs. An EJP could be modeled as the integration point of
the crosscutting relationship between two features [15].

6 Related Work

Our concept of EJPs is inspired by Sullivan et al’s work [24] on specification of
crosscutting interfaces (XPIs). XPIs abstract crosscutting behavior, isolating aspect
design from base code design and vice-versa. Continuing this work, Griswold et al
show how to represent XPIs as syntactic constructs [10]. EJPs play a similar role to
XPIs, but specifically in the context of framework development, by exposing a set of
framework events for notification and crosscutting composition, and by offering
predefined execution points for the implementation of optional and alternative features.

Feature oriented approaches (FOAs) have been proposed [23] to deal with the
encapsulation of program features that can be used to extend the functionality of
existing base program. Batory et al [2] argue the advantages that feature-oriented
approaches have over OO frameworks to design and implement product-lines. Mezini
and Ostermann [20] have identified that FOAs are only capable of modularizing
hierarchical features, providing no support for the specification of crosscutting
features. These researchers propose CaesarJ [21], an AO language that combines
ideas from both AspectJ and FOAs, to provide a better support to manage variability
in product-lines. The work of those authors has a direct relation to our work, since we
believe that the design of product-line architectures may benefit from the composition
and extension of different frameworks using integration and variability aspects.

In the middleware domain, Zhang and Jacobsen [25] propose the Horizontal
Decomposition method (HD), a set of principles guiding the definition of functionally
coherent core architecture and customizations of it. The core is customized with
aspects implementing orthogonal functionality. Unlike our approach, which uses EJPs
to achieve bi-directional decoupling of the core from its extensions in the framework
context, HD has a principle explicitly embracing obliviousness, whereby the core
should be completely unaware on the aspects.

7 Conclusions

In this paper we presented an approach for the design and implementation of
traditional OO frameworks with aspects. Our approach addresses the modular
implementation of framework optional features and enables framework crosscutting
composition with other OO extensions. The exposition of only specific framework
join points brings systematization to the process of extension and composition of the
framework. We have presented some case studies that demonstrate the benefits
brought by the approach. Furthermore, some initial guidelines to the use and adoption
of the approach were discussed. As a future work, we plan to refactor other existing
object-oriented frameworks to validate quantitatively the benefits of our approach.

244 U. Kulesza et al.

Acknowledgements. We would like to thank the members of Software Productivity
Group at Federal University of Pernambuco for valuable suggestions for improving this
paper. This research was partially sponsored by FAPERJ (grant No. E-26/151.493/
2005), CNPq (grants No. 552068/2002-0, 481575/2004-9 and 141247/2003-7),
MCT/FINEP/CT-INFO (grant No. 01/2005 0105089400), and European Commission
Grant IST-2-004349: European Network of Excellence on AOSD (AOSDEurope).

References

[1] V. Alves, P. Matos, L. Cole, P. Borba, G. Ramalho. “Extracting and Evolving Mobile
Games Product Lines”. Proceedings of SPLC'05, LNCS 3714, pp. 70-81, September
2005.

[2] D. Batory, Rich Cardone, and Y. Smaragdakis, Object-Oriented Frameworks and
Product-Lines. 1st Software Product-Line Conference (SPLC), pp. 227-248, Denver,
August 1999.

[3] N. Cacho, et al. Composing Design Patterns: A Scalability Study of Aspect-Oriented
Programming. Proceedings of AOSD'06, Bonn, Germany, 2006.

[4] C. Chavez, A. Garcia, U. Kulesza, C. Sant’Anna, C. Lucena. Taming Heterogeneous
Aspects with Crosscutting Interfaces. Journal of the Brazilian Computer Society, 2006
(to appear).

[5] W. Codenie, et al. “From Custom Applications to Domain-Specific Frameworks”,
Communications of the ACM, 40(10),October1997.

[6] K. Czarnecki, U. Eisenecker. Generative Programming: Methods, Tools, and Applica-
tions, Addison-Wesley,2000.

[7] M. Fayad, D. Schmidt, R. Johnson. Building Application Frameworks: Object-Oriented
Foundations of Framework Design. John Wiley & Sons, September 1999.

[8] E. Gamma, et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[9] A. Garcia. From Objects to Agents: An Aspect-Oriented Approach. PhD Thesis,
Computer Science Department, PUC-Rio, April 2004.

[10] W. Griswold, et al, "Modular Software Design with Crosscutting Interfaces", IEEE
Software, Special Issue on Aspect-Oriented Programming, January 2006.

[11] J. Hannemann, G. Kiczales. Design Pattern Implementation in Java and AspectJ.
Proceedings of OOPSLA’02, 2002, pp.161-173.

[12] G. Kiczales, et al. Aspect-Oriented Programming. Proc. of`ECOOP’97, Finland, 1997.

[13] G. Kiczales, et al, "Getting Started with AspectJ," Comm. ACM, vol. 44, pp. 59-65,
2001.

[14] U. Kulesza, et al. “A Generative Approach for Multi-Agent System Development”. In
"Software Engineering for Multi-Agent Systems III". LNCS 3390, pp. 52-69, 2004.

[15] U. Kulesza, et al. “Implementing Framework Crosscutting Extensions with XPIs and
AspectJ”, Technical Report, PUC-Rio, Brazil, April 2006.

[16] U. Kulesza, A. Garcia, F. Bleasby, C. Lucena. “Instantiating and Customizing Product
Line Architectures using Aspects and Crosscutting Feature Models”. Proceedings of the
Workshop on Early Aspects, OOPSLA’2005, San Diego,2005.

 Improving Extensibility of Object-Oriented Frameworks 245

[17] U. Kulesza, A. Garcia, C. Lucena. “Composing Object-Oriented Frameworks with
Aspect-Oriented Programming”, Technical Report, PUC-Rio, Brazil, April 2006.

[18] A. Kvale, et al. A Case Study on Building COTS-Based System using Aspect-Oriented
Programming. Proceedings of SAC’2005, pp. 1491-1498.

[19] M. Mattson, J. Bosch, M. Fayad. Framework Integration: Problems, Causes, Solutions.
Communications of the ACM, 42(10):80–87, October 1999.

[20] M. Mattsson, J. Bosch. Framework Composition: Problems, Causes, and Solutions. In
[7], 1999, pp. 467-487.

[21] M. Mezini, K. Ostermann: “Variability Management with Feature-Oriented Program-
ming and Aspects”. Proceedings of FSE’2004, pp.127-136, 2004.

[22] M. Mezini, K. Ostermann. “Conquering Aspects with Caesar”. Proc. of AOSD’2003, pp.
90-99, March 17-21, 2003, Boston, Massachusetts, USA.

[23] D. Riehle, T. Gross. “Role Model Based Framework Design and Integration”.
Proceedings of OOPSLA’1998, pp. 117-133, Vancouver, BC, Canada, October 18-22,
1998.

[24] Y. Smaragdakis, D. Batory. Mixin Layers: An Object-Oriented Implementation
Technique for Refinements and Collaboration-Based Designs, ACM TOSEM, 11(2):
215-255 (2002).

[25] K. Sullivan, et al. Information Hiding Interfaces for Aspect-Oriented Design, Proceed-
ings of ESEC/FSE´2005, pp.166-175, Lisbon, Portugal, September 5-9, 2005.

[26] C. Zhang, H. Jacobsen. “Resolving Feature Convolution in Middleware Systems”.
Proceedings of OOPSLA’2004, pp.188-205, October 24-28, 2004, Vancouver, BC,
Canada.

Comparing White-Box, Black-Box, and Glass-Box
Composition of Aspect Mechanisms�

Sergei Kojarski and David H. Lorenz

University of Virginia, Charlottesville, VA 22904, USA
{kojarski, lorenz}@cs.virginia.edu

Abstract. The manifestation of miscellaneous aspect-oriented extensions raises
the question of how these extensions can be used together to combine their aspec-
tual capabilities or reuse aspect code across extensions. While white-box compo-
sition of aspect mechanisms can produce an optimal compound mechanism, as
exemplified by the merger of ASPECTJ and ASPECTWERKZ into ASPECTJ 5, it
comes with a high integration cost. Meanwhile, generic black-box composition
can compose arbitrary aspect mechanisms, but may result in a compound mecha-
nism that is suboptimal in comparison to white-box composition. For a particular
family of aspect extensions, e.g., ASPECTJ-like mechanisms, glass-box composi-
tion offers the best of two worlds. Glass-box may rely on the internal structure of,
e.g., a pointcut-and-advice mechanism, without requiring a change to the code of
the individual mechanisms. In this paper we compare white-, black-, and glass-
box composition of aspect mechanisms. We explain subtle composition issues
using an example drawn from the domain of secure and dependable comput-
ing, deploying a fault-tolerance aspect written in ASPECTWERKZ together with
an access-control aspect written in ASPECTJ. To compare the three composi-
tion methods, we integrate a TinyAJ extension with a TinyAW extension, and
compare the results of running the aspects in a black-box framework and in a
glass-box framework to the result of running these aspects in ASPECTJ 5.

1 Introduction

Various aspect extensions exist today and more are being developed [1, 2]. Many of
those extensions follow the example set by ASPECTJ [3] in providing a join point model,
pointcuts, and advice. These extensions belong primarily to a family of aspect mech-
anisms called pointcut-and-advice (PA) [4]. In this paper we focus on integrating PA
mechanisms, ignoring for the sake of clarity any secondary (static) mechanisms, such
as the Open Classes (OC) mechanism in ASPECTJ.

A current phenomenon in aspect-oriented software development (AOSD) is the inte-
gration of popular PA aspect extensions. ASPECTJ 5 [5] is an example of integrating AS-
PECTJ 1.2 [3] and ASPECTWERKZ [6]. Another planned integration is that of ASPECTJ 5
and Spring [7]. This begs the question: can the method of integration scale up and the
cost of integration be reduced to also support on-demand integration of less popular or
domain-specific PA mechanisms?

� This work is supported in part by NSF’s Science of Design program under Grants Number
CCF-0438971 and CCF-0609612.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 246–259, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Comparing White-Box, Black-Box, and Glass-Box Composition 247

The current major integration efforts are motivated by the need to combine forces
of existing AOSD communities [8]. The desire to integrate aspect mechanisms is also
motivated by the foreseen need to reuse aspect libraries across extensions [9]. But the
potential benefit is much greater [10, 11, 12, 13, 14]. Reducing the integration cost and
supporting on-demand integration of aspect mechanisms will allow developers to com-
bine future and custom-made PA extensions at will.

1.1 Integration Approaches

In considering the integration of aspect mechanisms, there are three general composi-
tion approaches: white-box, black-box, (and a whole spectrum of gray shades in be-
tween), and glass-box (which is different than gray-box).

– In white-box composition [15] the internal code of the individual mechanisms is
visible at an arbitrary level of detail and open for modifications. This lets the in-
tegration accommodate highly customized composition semantics. For example,
ASPECTJ 5 can be characterized as white-box composition of traditional ASPECTJ
and ASPECTWERKZ. However, white-box composition is not easily extensible. For
example, it would be difficult to extend ASPECTJ 5 to accept aspects from exten-
sions other than ASPECTJ and ASPECTWERKZ.

– In black-box composition [15] only the interface to the individual mechanisms is
visible, without the code. This keeps the integration highly modular, letting arbi-
trary aspect mechanisms to be composed as long as they conform to the interface.
For example, Pluggable AOP [9] is a method that can be characterized as black-box
composition of dynamic aspect mechanisms. However, because black-box compo-
sition cannot rely on internal structure, it can only support a fixed composition
semantics that might be too restrictive. For example, ASPECTJ 5 is not the result of
black-box composition [9].

– In glass-box composition, internal knowledge of what the aspect mechanism is may
guide the composition, but the integration remains modularized and non-invasive.
White-box composition maximizes integration power in terms of workable seman-
tics, by exposing everything and hiding nothing. Black-box composition also aims
to maximize integration power, but in terms of modularity and reuse, by hiding
almost everything (about the internal part of the aspect mechanism) and exposing
almost nothing (except the observable ability to weave). Glass-box composition
supports black-box extensibility while achieving customizable white-box compo-
sition semantics (Table 1). Hence, glass-box composition takes the best of the two
worlds, trading some reuse (namely, limiting the applicability to only PA mecha-
nisms) for improved composition semantics.

Table 1. Property-based comparison of composition approaches

Property White-Box Black-Box Glass-Box

Target set of mechanisms Selected Heterogeneous Homogeneous
Extensible No Yes Yes for PA
Customizable Yes No Yes for PA

248 S. Kojarski and D.H. Lorenz

1.2 Evaluation Method

In order to evaluate the three composition approaches, we apply them to ASPECTJ and
ASPECTWERKZ. We built a black-box and a glass-box evaluation frameworks using:

– a simple object-oriented JAVA-like language named TinyJ,

and two PA mechanisms for TinyJ:

– an ASPECTJ-like aspect mechanism named TinyAJ; and
– an ASPECTWERKZ-like aspect mechanism named TinyAW.

The choice of focusing on the integration of ASPECTJ and ASPECTWERKZ as a case of
study is driven by several considerations. First, composing PA mechanisms is the most
practical specialization of the general composition problem.

Second, ASPECTJ 5 is the only case for which a white-box composition of two PA
mechanisms is readily available. We can run ASPECTJ code in ASPECTJ and in TinyAJ.
We can run ASPECTWERKZ code in ASPECTWERKZ and in TinyAW. We can run code
written partly in ASPECTJ and partly in ASPECTWERKZ in ASPECTJ 5. This gives us
a reference data point for what the preferred behavior should be. We can therefore
evaluate different composition approaches by checking whether or not their behavior is
consistent with ASPECTJ 5.

Third, ASPECTJ and ASPECTWERKZ are both general-purpose mechanisms. The func-
tionality of a general-purpose mechanism normally ranges over many domain-specific
mechanisms. For example, ASPECTJ may be used to express aspects written in the
domain-specific language COOL [16]. We can therefore expect the methods for com-
bining these general-purpose extensions to be applicable also for combining domain-
specific PA mechanisms.

Finally, we note that ASPECTWERKZ and ASPECTJ are highly similar in syntax and se-
mantics. While this similarity poses a concern in deriving from this example conclusions
about any two PA mechanisms, it is mostly a limitation for generalizing a white-box
composition method, less so for black-box and glass-box compositions. Specifically, in
our evaluation we take care not to rely on these similarities beyond what can be expected
in any PA mechanism.

2 White-Box Composition: A Benchmark Example

In this section, we defer to ASPECTJ 5 for the preferred semantics for integrating AS-
PECTJ and ASPECTWERKZ. We study the ASPECTJ 5 composition behavior by example.
The example is taken from the domain of secure and dependable computing and com-
prises code in JAVA, ASPECTJ, and ASPECTWERKZ.

2.1 Service in JAVA

The JAVA part consists of three classes: Client, DataSource, and Main. Client
(List. 1.1) and DataSource (List. 1.2) are classes of objects located on a quote server.

A client is identified by name and can request a quote. The getQuote method redi-
rects the request to the main database (using the DataSource class). The DataSource

Comparing White-Box, Black-Box, and Glass-Box Composition 249

Listing 1.1. code/example/base/Client.java

1 public class Client {
2 private String name;
3 public Client(String name) {this.name=name;}
4 public String getName() {return name;}
5 public String getQuote(String request) {
6 System.out.println("Client.getQuote: client="+name+", req="+request);
7 return new DataSource("main").getData(request);
8 }
9 }

Listing 1.2. code/example/base/DataSource.java

1 public class DataSource {
2 private String src;
3 public DataSource(String src) {this.src = src;}
4 public String getData(String request) {· · ·}
5 public static boolean isAvailable(String src) {· · ·}
6 }

Listing 1.3. code/example/base/Main.java

1 public class Main {
2 public static void main(String[] args) {
3 Client client = new Client("regular");
4 System.out.println("Requesting quote for regular client");
5 System.out.println(client.getQuote("<quoteName>")+"\n");
6 Client root = new Client("root");
7 System.out.println("Requesting quote for root client");
8 System.out.println(root.getQuote("<quoteName>"));
9 }

10 }

class is an abstraction over databases. Each database is identified by a source string
(DataSource.src). The getData method provides a way of retrieving data from the
database.

The method Main.main (List. 1.3) simulates client-side activity. Specifically, it re-
quests <quoteName> quotes on behalf of two clients, namely client and root.

2.2 Access Control and Billing in ASPECTJ

As the quote database grows in size, it may include sensitive data. The AccessControl
aspect (List. 1.4) protects the data against unauthorized access. The aspect imposes
advice around executions of DataSource.getData that are in the control flow of a
Client.getQuote execution. Depending on the client object and request string, the

250 S. Kojarski and D.H. Lorenz

Listing 1.4. code/example/aj/AccessControl.java

1 public aspect AccessControl {
2 pointcut request():
3 execution(String Client.getQuote(String));
4 pointcut access():
5 execution(String DataSource.getData(String));
6 String around(Client client, String request):
7 access() && cflow(request() && this(client)) && args(request){
8 System.out.println("AccessControl: jp="+thisJoinPoint);
9 if (isTrusted(client,request)) {

10 System.out.println("AccessControl: access granted");
11 return proceed(client,request);
12 }
13 else {
14 System.out.println("AccessControl: access denied");
15 return "ACCESS DENIED";
16 }
17 }
18 private boolean isTrusted(Client client, String request) {· · ·}
19 }

Listing 1.5. code/example/aj/Billing.java

1 public aspect Billing {
2 pointcut request():
3 execution(String Client.getQuote(String));
4 before(Client client, String request):
5 request() && target(client) && args(request) {
6 System.out.println("Billing: jp="+thisJoinPoint);
7 · · ·
8 }
9 }

advice either grants or denies access to the database. In the former case, the advice
proceeds to execute DataSource.getData. In the latter case, the advice returns an
ACCESS DENIED string.

As the quote service gains popularity, the company that owns the quote server de-
cides to bill clients for every request. This policy change is then implemented in an
aspect-oriented manner, using a Billing aspect (List. 1.5). The Billing aspect exe-
cutes advice before each execution of Client.getQuote. The advice charges a fee to
the client’s account.

2.3 QoS and Fault Tolerance in ASPECTWERKZ

Once clients start paying for requests, a quality of service (QoS) aspect becomes impor-
tant. To ensure continuous service, the company decides to replicate the information on

Comparing White-Box, Black-Box, and Glass-Box Composition 251

Listing 1.6. code/example/aw/FaultTolerance.java

1 @Aspect
2 public class FaultTolerance {
3 @Around(”execution(String Client.getQuote(String)) && args(request)”)
4 public Object toleranceAdvice(ProceedingJoinPoint joinPoint,

String request) {
5 System.out.println("FaultTolerance: jp="+joinPoint);
6 if (DataSource.isAvailable("main")) {
7 System.out.println("FaultTolerance: using main");
8 return joinPoint.proceed();
9 }

10 else {
11 System.out.println("FaultTolerance: using mirror");
12 return new DataSource("mirror").getData(request);
13 }
14 }
15 }

the main server with a second mirror server. Whenever the main server is overloaded or
down, the mirror server takes over and serves clients’ requests. The FaultTolerance
aspect (List. 1.6), written in ASPECTWERKZ, implements the new QoS strategy. At each
execution of Client.getQuote, the aspect checks if the main database is available. If
so, the aspect proceeds to the original method execution. If not, the aspect redirects the
request to the mirror database.

2.4 Testing

We test the collaborative behavior of these aspects by playing out four scenarios (Ta-
ble 2). In the first two scenarios, the main database is available, and, in the last two,
unavailable. In the first and third scenario, the AccessControl aspect denies access.
In the second and fourth scenario, AccessControl grants the access. The outputs are
shown in Listings 1.7, 1.8, 1.9, and 1.10.

2.5 Analysis

Running this example in ASPECTJ 5 exhibits two important behaviors that this white-
box composition of ASPECTJ and ASPECTWERKZ preserves:

– All three aspects affect each of the four scenarios;
– Billing and FaultTolerance apply to the same join point, and Billing is

always applied first.

The first observed behavior suggests that the ASPECTJ and ASPECTWERKZ aspects
observe the program execution through a coherent join point view. Note that in the third
and fourth scenario, the ASPECTWERKZ’s FaultTolerance aspect does not proceed

252 S. Kojarski and D.H. Lorenz

Table 2. Four scenarios

Scenario List. 1.7 List. 1.8 List. 1.9 List. 1.10
Database Available Available Unavailable Unavailable
Access Denied Granted Denied Granted

Listing 1.7. Main available; access denied

1 Requesting quote for regular client
2 Billing: jp=execution(String base.Client.getQuote(String))
3 FaultTolerance: jp=execution(String base.Client.getQuote(String))
4 FaultTolerance: using main
5 Client.getQuote: client=regular, req=<quoteName>
6 AccessControl: jp=execution(String base.DataSource.getData(String))
7 AccessControl: access denied
8 ACCESS DENIED

Listing 1.8. Main available; access granted

1 Requesting quote for root client
2 Billing: jp=execution(String base.Client.getQuote(String))
3 FaultTolerance: jp=execution(String base.Client.getQuote(String))
4 FaultTolerance: using main
5 Client.getQuote: client=root, req=<quoteName>
6 AccessControl: jp=execution(String base.DataSource.getData(String))
7 AccessControl: access granted
8 REQUESTED DATA

Listing 1.9. Main unavailable; access denied

1 Requesting quote for regular client
2 Billing: jp=execution(String base.Client.getQuote(String))
3 FaultTolerance: jp=execution(String base.Client.getQuote(String))
4 FaultTolerance: using mirror
5 AccessControl: jp=execution(String base.DataSource.getData(String))
6 AccessControl: access denied
7 ACCESS DENIED

Listing 1.10. Main unavailable; access granted

1 Requesting quote for root client
2 Billing: jp=execution(String base.Client.getQuote(String))
3 FaultTolerance: jp=execution(String base.Client.getQuote(String))
4 FaultTolerance: using mirror
5 AccessControl: jp=execution(String base.DataSource.getData(String))
6 AccessControl: access granted
7 REQUESTED DATA

Comparing White-Box, Black-Box, and Glass-Box Composition 253

to the Client.getQuote execution. Instead, the aspect invokes the DataSource-
.getData method directly from the advice body. Nonetheless, the ASPECTJ’s Access-
Control advice identifies subsequent DataSource.getData executions to be in the
control-flow of the Client.getQuote execution. That is, the getQuote method ex-
ecution join point is observed by both ASPECTJ and ASPECTWERKZ aspects as soon as
it “occurs,” regardless of what advice is run. Thus, at any point in the program execu-
tion, ASPECTJ and ASPECTWERKZ aspects have the same join point view of the program
execution.

The second observed behavior suggests an advice ordering rule that should be pre-
served across aspect extensions. In particular, before advice written in one extension
apply (at the same join point) before any around advice that is written in another ex-
tension. Similarly, it can be demonstrated that after advice must always apply after
any foreign around advice.

These behaviors allow us to evaluate a compound ASPECTJ/ASPECTWERKZ mecha-
nism. In fact, this example is useful for evaluating the behavior of a composition of any
two PA mechanisms. We use it to compare and contrast black-box and glass-box com-
position of TinyAJ (a simplified ASPECTJ) with TinyAW (a simplified ASPECTWERKZ).

3 Black-Box Composition

Black-box composition (Fig. 1) supports the integration of arbitrary third-party aspect
mechanisms. Essentially, a third-party aspect mechanism is a transformer of a base
language interpreter (base mechanism). The aspect mechanism overrides some of the
base mechanism’s operations, and extends the base mechanism with new operations [9].

More specifically, black-box composition integrates a base mechanism B with as-
pect mechanisms M1, . . . ,Mn into an AOP interpreter An. B realizes the expression
evaluation semantics for the base language, and each Mi realizes the semantics for a
corresponding PA extension to that language. Mi is designed to realize only its respec-
tive aspectual functionality, while all base operations are delegated to B.

Multiple aspect mechanisms compose in a chain-of-responsibility [17], pipe-and-
filter architecture [18]. In the composition, each aspect mechanism performs some part
of the evaluation and forwards other parts of the evaluation to the next mechanism
using delegation. If an expression is delegated by all mechanisms then it is eventually
evaluated in B. The mechanisms expose selected advice by evaluating them in An.

ex
po

se

ex
po

se

delegate

ex
po

se

ex
po

se

delegate

An

. . . BM1Mn Mn−1

exp exp exp exp

exp exp exp

exp val

Fig. 1. Black-box Composition of PA mechanisms

254 S. Kojarski and D.H. Lorenz

Listing 1.11. Main available; access denied

1 Requesting quote for regular client
2 FaultTolerance: jp=execution(String base.Client.getQuote(String))
3 FaultTolerance: using main
4 Billing: jp=execution(String base.Client.getQuote(String))
5 Client.getQuote: client=regular, req=<quoteName>
6 AccessControl: jp=execution(String base.DataSource.getData(String))
7 AccessControl: access denied
8 ACCESS DENIED

Listing 1.12. Main available; access granted

1 Requesting quote for root client
2 FaultTolerance: jp=execution(String base.Client.getQuote(String))
3 FaultTolerance: using main
4 Billing: jp=execution(String base.Client.getQuote(String))
5 Client.getQuote: client=root, req=<quoteName>
6 AccessControl: jp=execution(String base.DataSource.getData(String))
7 AccessControl: access granted
8 REQUESTED DATA

Listing 1.13. Main unavailable; access denied

1 Requesting quote for regular client
2 FaultTolerance: jp=execution(String base.Client.getQuote(String))
3 FaultTolerance: using mirror
4 REQUESTED DATA

Listing 1.14. Main unavailable; access granted

1 Requesting quote for root client
2 FaultTolerance: jp=execution(String base.Client.getQuote(String))
3 FaultTolerance: using mirror
4 REQUESTED DATA

3.1 Semantics of Black-Box Composition

In this section we re-run the benchmark example in a black-box composition of TinyAJ
and TinyAW. W.l.o.g., we assume that TinyAW takes precedence over TinyAJ, i.e., it
dominates the composition. In other words, the TinyAW mechanism intercepts all invo-
cations of the AOP interpreter An, and delegates evaluation to the TinyAJ mechanism;
the TinyAJ mechanism delegates the evaluation to the TinyJ evaluator function. Both
mechanisms expose pieces of advice by evaluating them in the AOP interpreter An.

Interestingly, the output is different from the output obtained with ASPECTJ 5. In
Listings 1.11 and 1.12, all TinyAJ and TinyAW aspects get executed. However, the

Comparing White-Box, Black-Box, and Glass-Box Composition 255

TinyAJ Billing aspect is executed after the TinyAW FaultTolerance aspect. In
Listings 1.13 and 1.14, only the FaultTolerance aspect runs, while all the TinyAJ
aspects are disabled. In the last two scenarios, users are not billed. Moreover, in
List. 1.13 an unauthorized user gains access to the protected data.

The benchmark example illustrates that the observed behavior in a black-box com-
position is different than ASPECTJ 5:

– There are scenarios that some of the aspects do not affect;
– The Billing advice is never applied first.

A more careful look at the black-box composition method reveals that:

– A black-box PA mechanism observes only the evaluation of expressions that are
delegated to that mechanism;

– A mechanism never delegates the evaluation if it advises a join point with an around
advice that does not proceed;

– If Mi delegates the evaluation to Mi−1, then all Mi−1 pieces of advice are dynam-
ically “nested” within (run in the control flow of) Mi’s around advice.

The first two points explain why different black-box PA mechanisms may (and gen-
erally do) reflect in their join point stacks different views of the program execution.
Consider the two scenarios shown in Listings 1.13 and 1.14. At the Client.getQuote
method execution join point, the TinyAW mechanism reflects the join point in its join
point stack, selects and runs the FaultTolerance aspect. Since the main database is
unavailable, FaultTolerance does not proceed, and the Client.getQuote method
body expression never reaches the TinyAJ mechanism. Consequently, TinyAJ:

– does not run the Billing before advice;
– does not reflect the Client.getQuote method execution join point in its join

point stack;
– does not run the around advice of the AccessControl aspect.

The third point explains why before advice of the Billing aspect does not apply
before the FaultTolerance around advice. Consider the two scenarios shown in
Listings 1.11 and 1.12. At the Client.getQuote method execution join point, both
Billing and FaultTolerance aspects take effect. However, the before advice of
the Billing aspect runs only after the FaultTolerance.toleranceAdvice advice
proceeds.

4 Glass-Box Composition of PA Mechanisms

The Pluggable AOP [9] is a framework implementing a semantical model [19] of an
AOP language in which the PA extension semantics is defined separately from seman-
tics of the base language. The model defines semantics of a PA extension as an AOP
interpreter A, which comprises a base mechanism B and an aspect mechanism M. B
realizes the expression evaluation semantics for the base language, and M realizes the
semantics for a PA extension to that language.

256 S. Kojarski and D.H. Lorenz

multi−mechanism weaver

compute
effect

build
jp

effect

jp
build

compute

comp.
run

base
compute

B
An

αb

n
, αa

n
, τnαb

1
, αa

1
, τ1

. . .

MM
ctx

exp

jp1

val

β

Mn

jpn

M1

χ

ctx

ctx

Fig. 2. Glass-box Composition of PA mechanisms

Elsewhere [19, 20] we introduced an extension of the PA mechanism model that sup-
ports a parallel glass-box composition of PA mechanisms (Fig. 2). The model defines
the base mechanism B as a computation constructor, and the mechanism M as a com-
putation transformer. B constructs a base computation β, and a computation’s context
ctx by interpreting an input expression exp. M selects pieces of advice by matching
them against ctx, and weaves them by transforming β into an advised computation χ,
which replaces β in the program execution.

The PA mechanisms M1, . . . ,Mn compose into a multi-mechanism MM. For each
base computation β, MM passes the currently evaluated expression exp and a com-
putation context ctx to all the PA mechanisms M1, . . . ,Mn. Each PA mechanism Mi

then constructs a join point, computes an aspectual effect, and passes it to the multi-
mechanism weaver. The weaver combines the aspectual effects of all the mechanisms,
and wraps them around the base computation β.

While black-box composition does not impose any requirements on an aspect mech-
anism design, the glass-box composition requires the following design conventions to
be met:

1. The PA mechanism Mi must provide its aspectual effect via three functions, namely
a before computation αb

i , an after computation αa
i , and an around computation

transformer τi. Intuitively, αb
i , τi, and αa

i provide meaning for before, around,
and after pieces of advice that were selected by the mechanism, respectively.

2. A multi-mechanism is a computation transformer (but not an expression evaluator
transformer);

The multi-mechanism weaver composes all constructed effects together into the re-
sult computation χ. χ is built by sequencing three multi-effect computations, namely a
before computation αb

χ, an around computation αar
χ , and an after computation αa

χ:

χ = αb
χ � αar

χ � αa
χ

Comparing White-Box, Black-Box, and Glass-Box Composition 257

where � denotes a left-to-right execution order for the sequenced computations: χ first
executes αb

χ, then αar
χ , and finally αa

χ. More specifically, let γ be a composite compu-
tation defined as:

γ = γ1 � . . . � γm

Then the execution of γ runs the subcomputations γ1, . . . , γm one by one, starting from
γ1 through γm. All subcomputations are passed the same context as that passed to γ.
The value computed by γ is the value returned from γm.

αb
χ sequences the before computations that are produced by the aspect mechanisms

in the index-ascending order:

αb
χ = αb

1 � . . . � αb
n

αa
χ sequences the after computations in the index-descending order:

αa = αa
n � . . . � αa

1

The around transformers τ1, . . . , τn are composed sequentially, in the following
index-descending order. First, τn produces the around computation αar

n by transform-
ing the base computation β. The τn−1 then produces αar

n−1 by transforming αar
n . The

process repeats until τ1 produces αar
1 by transforming the output of τ2:

αar
χ = αar

1 = τ1(τ2(. . . (τn(β)) . . .))

The composition of the around transformers allows aspects written in one extension
to proceed to the aspects written in another extension. αar

1 proceeds to αar
2 , αar

2 pro-
ceeds to αar

3 , and so on. β is executed only if all the around computations proceed.
The glass-box approach enables PA mechanism compositions that exhibit the desired

behavior. The parallel architecture allows the composed mechanisms to observe the
same exact sequence of computation contexts and expressions. The multi-mechanism
weaver is capable of ordering the advice appropriately.

As a proof of concept, we applied glass-box composition to integrate TinyAJ and
TinyAW. When we run the benchmark example in the constructed glass-box composi-
tion, we get the same output as ASPECTJ 5.

5 Conclusion

White-box composition of aspect mechanisms involves the aspect mechanisms’ code
being opened, inspected, modified and merged. It hides nothing; exposes everything.
This is a powerful composition technique for a one-time customized composition like
the one applied to create ASPECTJ 5, but it does not scale up to integrating multiple
mechanisms or to handling repeated integrations.

Black-box composition, in contrast, supports third-party composition of aspect mech-
anisms [9]. It hides the internal parts of the aspect mechanism; exposes only the ability
to wrap. Conceptually, black-box composition is similar to mixin inheritance.

A glass-box composition method [20] for integrating PA mechanisms hides how the
PA mechanisms work but exposes some information on what they do. It trades little
extensibility for added composition power.

258 S. Kojarski and D.H. Lorenz

In this paper, we compare white-box, black-box, and glass-box composition of PA
mechanisms using the integration of ASPECTJ and ASPECTWERKZ as a benchmark ex-
ample. We present a set of aspects in ASPECTJ and ASPECTWERKZ, drawn from the
domain of secure and dependable computing, that display different behavior depending
on whether they are deployed in a compound mechanism integrated using black-box
or white-box composition. We then present a glass-box framework for composing PA
mechanisms. The glass-box framework supports a composition that exhibits the behav-
ior observed in ASPECTJ 5.

Although the glass-box composition cannot be applied to integrate non-PA mecha-
nisms, it can be combined together with other approaches. A general strategy to achieve
composition of any domain specific extensions is to partition the space of extensions to
classes of homogeneous extensions. The glass-box integration method can be applied to
each homogeneous subset of mechanisms, and the classes can then be integrated once
using a white-box or black-box composition.

References

1. Kersten, M.: AOP@Work: AOP tools comparison, part 1. developerWorks (2005)
http://www.ibm.com/developerworks/java/library/j-aopwork1/.

2. Kersten, M.: AOP@Work: AOP tools comparison, part 2. developerWorks (2005)
http://www.ibm.com/developerworks/java/library/j-aopwork2/.

3. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An overview
of AspectJ. In Knudsen, J.L., ed.: Proceedings of the 15th European Conference on Object-
Oriented Programming. Number 2072 in Lecture Notes in Computer Science, Budapest,
Hungary, ECOOP 2001, Springer Verlag (2001) 327–353

4. Masuhara, H., Kiczales, G.: Modeling crosscutting in aspect-oriented mechanisms. In
Cardelli, L., ed.: Proceedings of the 17th European Conference on Object-Oriented Program-
ming. Number 2743 in Lecture Notes in Computer Science, Darmstadt, Germany, ECOOP
2003, Springer Verlag (2003) 2–28

5. Colyer, A.: AOP@Work: Introducing AspectJ 5. developerWorks (2005)
http://www.ibm.com/developerworks/java/library/j-aopwork8/.

6. Bonér, J.: What are the key issues for commercial AOP use: how does AspectWerkz address
them? In Lieberherr, K., ed.: Proceedings of the 3rd International Conference on Aspect-
Oriented Software Development, Mancaster, UK, AOSD 2004, ACM Press (2004) 5–6

7. Colyer, A.: Joining interface21. The Aspect Blog (2005)
http://www.aspectprogrammer.org/blogs/adrian/2005/09/
joining interfa.html.

8. Colyer, A.: The new holy trinity. The Aspect Blog (2005)
http://www.aspectprogrammer.org/blogs/adrian/2005/03/
the new holy tr.html.

9. Kojarski, S., Lorenz, D.H.: Pluggable AOP: Designing aspect mechanisms for third-party
composition. In Johnson, R., Gabriel, R.P., eds.: Proceedings of the 20th Annual Conference
on Object-Oriented Programming Systems, Languages, and Applications, San Diego, CA,
USA, OOPSLA’05, ACM Press (2005) 247–263

10. Courbis, C., Finkelstein, A.: Towards aspect weaving applications. In: Proceedings of the
27th International Conference on Software Engineering, St. Louis, Missouri, USA, ICSE
2005, ACM Press (2005)

Comparing White-Box, Black-Box, and Glass-Box Composition 259

11. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applications.
1st edn. Addison-Wesley (2000)

12. Hugunin, J.: The next steps for aspect-oriented programming languages (in Java). In: NSF
Workshop on New Visions for Software Design & Productivity: Research & Applications,
Vanderbilt University, Nashville, TN, National Coordination Office for Information Technol-
ogy Research and Development (NCO/IT R&D) (2001) White Paper.

13. Lopes, C.V., Dourish, P., Lorenz, D.H., Lieberherr, K.: Beyond AOP: Toward Naturalistic
Programming. ACM SIGPLAN Notices 38(12) (2003) 34–43 OOPSLA’03 Special Track on
Onward! Seeking New Paradigms & New Thinking.

14. Wand, M.: Understanding aspects (extended abstract). In: Proceedings of the 7th ACM
SIGPLAN International Conference on Functional Programming, Uppsala, Sweden, ACM
Press (2003) Invited talk.

15. Szyperski, C.: Component Software, Beyond Object-Oriented Programming. 2nd edn.
Addison-Wesley (2002) With Dominik Gruntz and Stephan Murer.

16. Lopes, C.V.: D: A Language Framework for Distributed Programming. PhD thesis, North-
eastern University (1997)

17. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Professional Computing. Addison-Wesley (1995)

18. Shaw, M., Garlan, D.: Software Architecture, Perspectives on an Emerging Discipline.
Prentice-Hall (1996)

19. Kojarski, S., Lorenz, D.: Modeling aspect mechanisms: A top-down approach. In: Pro-
ceedings of the 28th International Conference on Software Engineering, Shanghai, China,
ICSE’06 (2006)

20. Lorenz, D.H., Kojarski, S.: Parallel composition of aspect mechanisms: Design and eval-
uation. In Brichau, J., Chiba, S., Volder, K.D., Haupt, M., Hirschfeld, R., Lorenz, D.H.,
Masuhara, H., Tanter, E., eds.: AOSD 2006 Workshop on Open and Dynamic Aspect Lan-
guages (ODAL), Bonn, Germany (2006)

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 260 – 272, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Achieving Smooth Component Integration with
Generative Aspects and Component Adaptation

Yankui Feng, Xiaodong Liu, and Jon Kerridge

School of Computing, Napier University, Edinburgh, UK
{y.feng, x.liu, j.kerridge}@napier.ac.uk

Abstract. Due to the availability of components and the diversity of target ap-
plications, mismatches between pre-qualified existing components and the par-
ticular reuse context in applications are often inevitable and have been a major
hurdle of component reusability and successful composition. Although compo-
nent adaptation has acted as a key solution of eliminating these mismatches, ex-
isting practices are either only capable for adaptation at a rather simple level, or
require too much intervention from software engineers. This paper presents a
highly automatic approach to component adaptation at adequately deep level.
The adaptability and automation is achieved in an aspect-oriented component
reuse framework by generating and then applying the adaptation aspects under
designed weaving process according to specific adaptation requirements. An
expandable library of reusable adaptation aspects at multiple abstraction levels
has been developed. A prototype tool is developed to scale up the approach.

1 Introduction

Component-Based Development (CBD) has been proved as an effective technology in
supporting community-wide reuse of software assets [6][12][13]. Under the method-
ology of CBD, both Commercial-Off The Shelf (COTS) [6] components and in-house
components can be integrated to build a range of target applications, including tradi-
tional systems and most modern applications such as web services in a service-
oriented architecture.

However, in many cases mismatches between pre-qualified available components
and the specific reuse context of particular applications are inevitable and have been a
major hurdle of wider component reusability and smooth composition. Component
adaptation has been researched over the years as a key solution to the above problem
[3][8][9][17]. Due to the complex nature of the mismatch problem, available ap-
proaches are either only capable for adaptation at simple levels such as wrappers [3],
or inefficient to use as a result of lack of automation in their adaptation process
[8][17].

In this paper, a Generative Aspect-oriented component adaptatIoN (GAIN) ap-
proach is proposed to achieve adaptation at a deeper level, in terms of functionalities
and non-functional features, rather than limited at component interface level like
wrappers [3]. The approach is based on the successful points in a few technologies,
i.e., Aspect Oriented Programming [10][16], Software Product Line [2][5] and

 Achieving Smooth Component Integration with Generative Aspects 261

Generative Component Adaptation [1][4] the GAIN approach, component adaptation
is carried out within an aspect-oriented component reuse framework by generating
and then applying the adaptation aspects under designed weaving process according
to specific adaptation requirements. The generation absorbs the variation concept of
software product line and assures the perfect suitability of adaptation aspects for the
specific adaptation requirements of aimed reuse context. Compared with traditional
AOP, the weaving process of aspects in GAIN supports more complex control flow,
i.e., not only sequence, but also switches, synchronization and multiple threads, to
make the adaptation more accurate and efficient for components reused in more com-
plicated environments such as concurrent dynamic applications. To facilitate the reus-
ability of adaptation knowledge, an expandable library of reusable adaptation aspects
at multiple abstraction levels has been developed. A prototype tool is developed to
scale up the approach.

The reminder of the paper is organized as follows: Section 2 discusses related work
with critical analysis. Section 3 describes the approach framework. Section 4 presents
how to generate and apply reusable adaptation aspects under the designed weaving
process. Section 5 introduces the prototype tool, and section 6 presents an example to
demonstrate the approach. Finally, section 7 presents the conclusion.

2 Related Work

2.1 SAGA Project

Scenario-based dynamic component Adaptation and GenerAtion (SAGA) [8][17] at
Napier University developed a deep level component adaptation approach with little
code overhead through XML-based component specification, interrelated adaptation
scenarios and corresponding component adaptation and generation.

SAGA project focused mainly on generative component adaptation at binary code
level, i.e., the adapted part of the component will be generated as new blocks of bi-
nary code and these blocks will then be composed with other unchanged blocks of
code to form a new adapted component.

SAGA project achieved deep adaptation with little code overhead in the adapted
component; however, automation is a challenge in the SAGA approach because it is
always complex to generate blocks of code according to scenarios and original com-
ponent code. To reach high automation, a large set of adaptation rules and domain
knowledge has to be developed to support the process, and probably the application
domains have to be restricted as well.

2.2 Binary Component Adaptation

Binary Component Adaptation (BCA) [9] has been proposed by R. Keller and U.
Hölzle to support component adaptation in binary form and on-the-fly (during pro-
gram loading). BCA rewrites component binaries before (or while) they are loaded,
requires no source code access and guarantees release-to-release compatibility. That
is, an adaptation is guaranteed to be compatible with a new binary release of the com-
ponent as long as the new release itself is compatible with clients compiled using the
earlier release.

262 Y. Feng, X. Liu, and J. Kerridge

However, together with the binary code adaptation, especially with “online” (on-
the-fly) adaptations, extra processing time is required. As a result, the load-time over-
head is a major problem. Consequently, when more adaptation processes are required,
the load-time will be the bottleneck of the system performance.

2.3 Superimposition

Superimposition [3] is a novel black-box adaptation technique, which is proposed by
J. Bosch at University of Karlskrona/Ronneby. In Superimposition, software develop-
ers are able to impose a number of predefined, but configurable types of functionality
on reusable components.

The notion of superimposition has been implemented in the Layered Object Model
(LayOM), an extensible component object language model. The advantage of layers
over traditional wrappers is that layers are transparent and provide reuse and custom-
izability of adaptation behaviour.

Superimposition uses nested component adaptation types to compose multiple ad-
aptation behaviours for a single component. However, due to lack of component in-
formation, modification is limited at simple level, such as conversion of parameters,
and refinement of operations. Moreover, with more layers of code imposed on origi-
nal code, the overhead of the adapted component increases heavily, which degrades
system efficiency.

2.4 Customizable Components

Customizable Components [11], as part of the COMPOSE project, is an environment
for building customizable software components, it is an approach to expressing cus-
tomization properties of components. The declarations enable the developer to focus
on what to customize in a component, as opposed to how to customize it. Customiza-
tion transformations are automatically determined by compiling both the declarations
and the component code; this process produces a customizable component. Such a
component is then ready to be custom-fitted to any application.

In this work, the customized components generated for various usage contexts have
exhibited performance comparable to, or better than manually customized code, how-
ever, component adaptation is limited to pre-defined optional customization, and
deeper adaptation is not supported.

2.5 JAsCo

JAsCo [14][15] is an aspect based research project for component based development,
in particular, the Java Beans component model. JAsCo combines the expressive power
of AspectJ [10] with the aspect independency idea of Aspectual Component [7].

The JAsCo language introduces two concepts: aspect beans and connectors. An as-
pect bean is used to define aspects independently from a specific context, which inter-
feres with the execution of a component by using a special kind of inner class, called
a hook. Hooks are generic and reusable entities and can be considered as a combina-
tion of an abstract pointcut and advice [14][15]. Because aspect beans are described
independently from a specific context, they can be reused and applied upon a variety

 Achieving Smooth Component Integration with Generative Aspects 263

of components. A connector allows specifying precedence and combination strategies
between the aspects and components.

However, JAsCo is not suitable for specific modification requirements since it does
not provide a mechanism for conducting users’ requirements. In addition, the way to
apply aspects on target components / systems is based on traditional AOP process,
and therefore, may result in lower readability, maintainability and performance.
Moreover, the current implementation of JAsCo has been bounded to Java, which
means it can not be used in a heterogeneous system including different programming
language implementations.

2.6 Summary

Due to the complex nature of the mismatch between reuse requirements and compo-
nents, available component adaptation approaches are either only capable for adapta-
tion at simple levels such as wrappers, or inefficient to use as a result of lack of
automation in their adaptation process. Deep level component adaptation can be
achieved through AOP.

Some AOP based frameworks have been developed to achieve reusable aspects.
However, an AOP platform independent framework is still desired in a heterogeneous
distributed environment to solve crosscutting problem since a common model for
AOP is still missing. Furthermore, current AOP techniques only support weaving
aspects sequentially. To cope with complex adaptation, it often requires weaving
aspects in more sophisticated control flow, e.g. dynamically deciding whether to in-
voke a particular aspect, and synchronizing in multi-thread applications.

3 The Approach Framework

The general process of our approach is given in figure 1. We presume that a compo-
nent has been found potential suitable to be used in a component-based application,
however, the application developer indicated some mismatches of the component and
wishes to have it adapted.

The mismatches will be eliminated by applying aspect-oriented adaptation to the
original component. At start, the component is analyzed with the component analyzer,
which analyzes the source or binary code of the component and extracts component
specification information, e.g. class names and method signatures. The component
specification will be used to guide component adaptation. If the component already
has well defined specification, this step can be skipped.

Then based on the adaptation requirements, a Process-based Component Adapta-
tion Specification (PCAS) will be composed by selecting aspects defined at the ab-
straction level of Abstract Aspect Frames (AAF). The selection of aspects is actually
the process to determine functional variation of a specific adaptation. An AAF is
considered as a template to coin out specific aspects. The composition of PCAS is
supported by an interactive IDE called PCAS Editor, which supports both graphical
and XML source view of the PCAS.

264 Y. Feng, X. Liu, and J. Kerridge

Fig. 1. The Generative Aspect-oriented component adaptatIoN (GAIN) framework

A PCAS is an XML formatted document, which includes the details of component
adaptation, such as the target component, the weaving process, and the abstract as-
pects to be applied. In a PCAS, sequence and switch structure are supported to
achieve flexible adaptation on components. In PCAS, the adaptation process is de-
picted with only the ID of the selected aspects. Full details of the aspects are still kept
in Aspect Repository.

Based on PCAS and the lower level aspect definition, namely Aspect Frame (AF)
in the aspect repository, executable aspects instances (AInsts) are generated by the
aspect generator according to different AOP implementation specifications. As result,
platform variation is achieved during aspect generation. The input for the aspect gen-
erator is AF and the output is AInsts.

Reusable aspects are defined at different abstraction levels and kept in the reposi-
tory as AAF, AF, and AInst. The reusable assets in the repository include both primi-
tive and composite aspect types, which comes from the adaptation process in PCAS.
The saved aspects, particularly composite aspects are potentially reusable for compo-
nent adaptations in other applications. While the framework is used, the repository
will be populated with more and more aspects incrementally. Therefore, the aspect
repository supports highly and incrementally reusable aspects.

The aspect manager is a tool to manage reusable aspects in the aspect repository,
and to present graphical views of aspects at various abstraction levels.

The generated executable aspects are finally applied to the component by the as-
pect weaver. A new adapted version of the component is then created through the
aspect weaving. Since current AOP platforms like AspectJ do not support compli-
cated flow control such as switch in weaving process, post-processing is applied to
enable process-based weaving in our framework. The basic idea of post-processing

 Achieving Smooth Component Integration with Generative Aspects 265

Fig. 2. Multiple abstraction levels of reusable aspects in Software Product Line view

based weaving is to revise the binary code of AInst generated by normal AOP com-
piler such as AspectJ compiler, and add more process control to it according to PCAS.

4 Aspect-Oriented Generative Adaptation

4.1 Capturing Adaptation Knowledge in Aspects

In our approach, the adaptation knowledge is captured in aspects and aims to be reus-
able in various adaptation situations. As shown in figure 2, to achieve automated and
precise adaptation, these aspects are defined at three abstraction levels, i.e., Abstract
Aspect Frames (AAF), Aspect Frames (AF), and Aspect Instances (AInsts).

The three abstraction levels of aspects facilitate the reusability of adaptation as-
pects as they realize different variations of these aspects, including functional varia-
tions, parameter variations and platform variations. At each level, a pair, namely
(CAS, AA) is used to describe Common Aspect Structure (CAS) and Aspect Actions
(AA). Common core assets are defined in Common Aspect Structures and variations
are defined in Aspect Actions.

CAS provides the basic information of an aspect, e.g. which component to be
adapted (target component), pointcut name, etc. All aspects have the same CAS at
AAF level no matter how different these aspects are in functionality and implementa-
tion platform.

On the other hand, Aspect Actions provide the information of the variations of dif-
ferent aspects of the same or different aspect types. For instance, for an aspect of
logging type, an output file name must be provided; similarly an authentication aspect
must be supplied with an authentication type.

Abstract Aspect Frames are the fundamental and the most abstract level of the As-
pect Repository. As XML schema files, AAFs are used to define the structure of dif-
ferent aspects. According to the functionality, the AAFs form a hierarchical structure
that reflects functional variations of different adaptations. Adaptation aspects are

266 Y. Feng, X. Liu, and J. Kerridge

modelled into different types, for example, logging, caching, authentications, etc.
Each aspect type is then refined into a group of sub-types. For example, aspects about
authentication may consist of operating-system-based authentication and database-
based authentication.

AAFs are a hierarchical aspect type system defined in XML schema format. This
type hierarchy includes many levels of aspect types and sub-types, which capture
various functionalities of the adaptation aspects. The Aspect Repository, assisted with
the Aspect Manager, can adjust its aspect type structure to accommodate aspects with
any functionality as long as they are defined in the required AAF formats.

Each AAF may have many Aspect Frames. AFs are the second abstraction layer in
aspect definition. AFs are the instances of related AAFs. Compared with its AAF, an
AF has the details of a concrete aspect populated into it by assigning a value to the
parameters. User interaction is required in the tool to provide necessary information
for creating an AF from an AAF. All information gathered from the tool will be de-
scribed in (CAS, AA) pair. Defined in XML format, AFs are independent from con-
crete AOP platforms such as AspectJ.

An AF is not executable until it is mapped onto a concrete AOP platform. The re-
sult of this mapping is a family of Aspect Instances based on various AOP platforms.
An Aspect Instance is executable and specific to a concrete AOP platform, and it
reflects platform variations of an aspect on different AOP platforms. The agent to
generate Aspect Instances from their AF is called Semantic Interpreter. The genera-
tion process is fully automatic.

4.2 Process Based Component Adaptation Specification (PCAS)

To satisfy the adaptation requirements for a particular reuse context, it often requires
performing complex adaptations to multiple components with a set of generated
aspects applied to these components under a specially designed process containing
conditions, synchronization and other flow controls. Process-based Component Ad-
aptation Specification is developed to describe the above complicated adaptation
details.

The elements in a PCAS include target component(s) (“Host”), information of as-
pect(s) to be applied such as aspect id, type, and level (“Apply-aspect”), and process
control information, such as flow controls (“Sequence”, “Switch”, “Case”), condi-
tions, and synchronization support (“synchronized”). Flow control elements are used
to provide advanced weaving process, and synchronization support enables multiple
accesses to the same resource such as a file or a database from different aspects. A
sample of PCAS is given in figure 5.

If a PCAS is found common and reusable in the future, its process control part can
be regarded as a composite aspect type. Composite aspects are supported in AAF
level to achieve advanced reuse in typical aspect using cases.

To implement PCAS in weaving process, a post-weaving technique is developed.
The post-weaving tool gets class files for aspects generated by AOP platform such as
AspectJ as input, and then modifies those class files to generate new class files that
support complicated flow control and synchronization according to PCAS.

 Achieving Smooth Component Integration with Generative Aspects 267

5 The Prototype Tool

A CASE tool has been developed to scale up the proposed approach. The tool pro-
vides a visual environment for component users to adapt components with the pro-
posed approach.

Fig. 3. A screen dump of PCAS Editor

Fig. 4. A screen dump of Aspect Manager

268 Y. Feng, X. Liu, and J. Kerridge

The tool includes the following parts: 1) Component Analyzer, which analyzes
component and gets necessary information such as the class names and method
names, for component adaptation. 2) PCAS Editor, which provides an edit environ-
ment for PCAS both in graphical interface and at XML level. A screen dump is
shown in figure 3. 3) Aspect Manager, which supports the management of reusable
aspects in Aspect Repository and the graphical view of different levels of aspects.
Aspects at different levels can be created, removed, and edited in Aspect Manager,
either in the graphical user interface, or at XML level. A screen dump of Aspect

<?xml version="1.0"?>
<AOP-Process name="Aspects_on_StudentInfo"
xmlns="http://www.dcs.napier.ac.uk/2005/PCAS">
 <Host class="StudentInfo" method="getStudentInfo">
 <Container name="Auth_and_trace_on_studentInfo">
 <Sequence>
 <Apply-aspect aspect_id="020201"
 aspect_level="primitive"
 aspect_type="Authentication"
 af_id="02020001"
 af_name="auth_1"
 synchronized="false"
 comment="check user name and password"/>
 <Switch
expr="auth_1.getAuthenticationStatus()">
 <case value="true">
 <Apply-aspect aspect_id="1"
 aspect_level="primitive"
 aspect_type="logging"
 af_id="01020001"
 af_name="TraceStudentInfo_succeed"
 synchronized="true"
 comment="successfully access to ser-
vice info"/>
 </case>
 <case value="false">
 <Apply-aspect aspect_id="1"
 aspect_level="primitive"
 aspect_type="logging"
 af_id="01020002"
 af_name="TraceStudentInfo_failed"
 synchronized="true"
 comment="log service using info"/>
 </case>
 </Switch>
 </Sequence>
 </Container>
 </Host>
 </AOP-Process>

Fig. 5. The Process-based Component Adaptation Specification

 Achieving Smooth Component Integration with Generative Aspects 269

Manager is shown in figure 4. 4) Semantic Interpreters, which translate AFs to AInsts
based on selected specific AOP platform and aspects. If there are m different AOP
platforms and n different aspects in the tool, there will be m×n different interpreters. 5)
Aspect Generator: based on AFs and corresponding Semantic Interpreters, executable
aspect instances will be generated by Aspect Generator. The result executable aspects
will be saved into aspect repository as AInsts. 6) Aspect Weaver, which is used to gen-
erate new components by weaving generated AInsts into original components.

6 Example

The proposed approach has been applied to the construction of a student record sys-
tem as a case study to test its correctness and capability. The following example is
taken from the case study to demonstrate how the proposed approach works. In the
case study, a component is found from a previous system providing access to student
information. The component user has found the component is potentially suitable for
the new application and wishes to integrate it into the new system. However, the

<?xml version="1.0" ?>
<Aspect name="TraceStudentInfo_succeed">
 <!-- Core asset -->
 <CommonCoreAsset>
 <PointCut>
 <Name>traceMethods</Name>
 <When>execution</When>
 <ReturnType>*</ReturnType>
 <ClassName>StudentInfo</ClassName>
 <MethodName>getStudentInfo</MethodName>
 <Parameters>..</Parameters>
 </PointCut>
 <Advice>
 <When>before</When>
 <PointCutName ref="traceMethods" />
 </Advice>
 </CommonCoreAsset>

 <!-- Variations -->
 <Variation type="logging">
 <ExtraPreConditions>
 <ExtraPrecondition/>
 </ExtraPreConditions>
 <Output>
 <Device>
 <File>D:\tmp\student_info_aop.log</File>
 </Device>
 <Messages>
 <Message>Access to StudentInfo.getStudentInfo
 successfully on </Message>
 <Date/>
 <Message>at </Message>
 <Time/>
 </Messages>
 </Output>
 </Variation>
</Aspect>

CAS

AA

Fig. 6. An Aspect Frame

270 Y. Feng, X. Liu, and J. Kerridge

import java.io.*;
import java.util.*;
import org.aspectj.lang.*;

public aspect TraceStudentInfo_succeed
{
 pointcut traceMethods():execution(* StudentInfo.getStudentInfo(..));
 before():traceMethods() {

 Calendar cal = Calendar.getInstance();
 try {
 FileWriter fw = new FileWriter("D:\\tmp\\student_info_aop.log", true);
 PrintWriter pw = new PrintWriter(fw);

 pw.print("Access to StudentInfo.getStudentInfo
 successfully on ");
 pw.print(cal.get(Calendar.YEAR) + ".");
 pw.print(cal.get(Calendar.MONTH) + ".");
 pw.print(cal.get(Calendar.DAY_OF_MONTH) + " , ");

 pw.print("at ");

 pw.print(cal.get(Calendar.HOUR) + ":");
 pw.print(cal.get(Calendar.MINUTE) + ":");
 pw.print(cal.get(Calendar.SECOND));
 pw.println();
 pw.close();
 }catch(Exception e) {
 System.out.println("Error occured: " + e);

}

 }
}

AA

CAS

CAS

AA

Fig. 7. A simple Aspect Instance

component user wants to restrict the access to the student information only to the
approved users, and wishes to monitor the access by logging the usage time.

To respond to the above need, the component user plans to add authentication to
this component prior to using it. According to the result of authentication, the detail of
access activity to the component will be recorded.

An authentication aspect is applied to this component first, followed by the appli-
cation of corresponding logging aspects depending on the result of authentication
aspect.

The adaptation actions are then described in a Process-based Component Adapta-
tion Specification (PCAS) shown in figure 5. As shown in figure 4, the specification
is created with the PCAS Editor by finding appropriate AAFs, i.e., either primitive
types or composite types of aspects, and putting these AAFs into an adaptation proc-
ess. Functional variation of adaptation is implemented through the composition of
PCAS.

The specification in PCAS is at a rather overview level and does not contain the
details of individual aspects. Developers need to provide parameter value for each
aspect. Common AFs can be saved into Aspect Repository for further reuse. In this
example, three AFs will be generated: AF for authentication, AF for logging if au-
thenticated successfully, and AF for logging if authenticated unsuccessfully. Due to

 Achieving Smooth Component Integration with Generative Aspects 271

the structural similarity of AFs of different aspects, we only give the AF for logging if
authenticated successfully in figure 6 as an example.

From AFs, Aspect Generator generates aspect instances (AInsts) that are specific to a
selected AOP platform. The generated AInst of the AF in figure 6 is given in figure 7.

The Aspect Weaver weaves the generated aspect instances into the original com-
ponent according to the PCAS. The final adapted component source code is invisible
to the developer. By deploying the adapted component, the new application is built
and released to the targeted user.

7 Conclusions

Despite the success of component-based reuse, the mismatches between available pre-
qualified components and the specific reuse context in individual applications con-
tinue to be a major factor hindering component reusability and smooth composition.
The work presented in this paper is based on the observation that existing reuse ap-
proaches and tools are weak in providing a mechanism to adapt components at ade-
quately deep level and meanwhile with sufficient automation.

The proposed approach applies aspect-oriented generative adaptation to targeted
components to correct the mismatch problem so that the components can be inte-
grated into the target application smoothly. Automation and deep level adaptation are
the benefits of the approach. This is achieved with the following key techniques in an
aspect-oriented component reuse framework: 1) the generation of adaptation aspects
based on specific adaptation requirements and selected abstract aspects as template; 2)
the advanced aspect weaving process definition mechanism that supports switch and
synchronization; 3) an expandable library of reusable adaptation aspects at multiple
abstraction levels.

The GAIN technology enables application developers to adapt the pre-qualified
components to eliminate mismatches to the integration requirement of specific appli-
cations. The benefits of the approach include deeper adaptability, higher automation
and therefore smooth component composition and wider reusability. As consequence,
the target component-based systems will have better quality. Our case studies, partly
described in section 6, have shown that the approach and tool are promising in their
ability and capability to solve the mismatch problem.

References

1. Batory, D., Chen, G., Robertson, E., & Wang, T.: Design Wizards and Visual Program-
ming Environments for GenVoca Generators, IEEE Transactions on Software Engineering,
May 2000, pp. 441-452.

2. Batory, D., Johnson, C., MacDonald, B., & Heeder, D. V.: Achieving Extensibility Through
Product-Lines and Domain-Specific Languages: A Case Study, ACM Transactions on
Software Engineering and Methodology (TOSEM), April 2002, Vol. 11(2), pp. 191-214.

3. Bosch, J.: Superimposition: a component adaptation technique, Information and Software
Technology, 1999, 41, 5 pp. 257-273.

4. Cleaveland, J. C.: Building application generators, IEEE Software, July 1998, pp. 5(4):
25-33.

272 Y. Feng, X. Liu, and J. Kerridge

5. Diaz-Herrera, J.L., Knauber, P., & Succi, G.: Issues and Models in Software Product
Lines, International Journal on Software Engineering and Knowledge Engineering, 2000,
10(4):527-539

6. http://www.sei.cmu.edu/cbs/
7. Lieberherr, K., Lorenz, D., & Mezini, M.: Programming with Aspectual Components,

Technical Report NU-CCS-99-01, March, 1999.
8. Liu X., Wang B., & Kerridge J.: Achieving Seamless Component Composition Through

Scenario-Based Deep Adaptation And Generation, Journal of Science of Computer Pro-
gramming (Elsevier), Special Issue on New Software Composition Concepts, 2005, pp. 56, 2.

9. Keller, R., & Hölzle, U.: Binary Component Adaptation. Proceedings of the 12th European
Conference on Object-Oriented Programming, July, 1998.

10. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., & Griswold, W.: Getting
Started with AspectJ, Communications of the ACM, October 2001, pp. 59-65.

11. Kucuk, B., & Alpdemir, M.N.: Customizable adapters for blackbox components, Proceed-
ings of the 3rd International Workshop on Component Oriented Programming, 1998,
pp.53-59.

12. Samentinger, J.: Software Engineering with Reusable Components, Springer Verlag,
1997.

13. Sommerville, I.: (2004) Software Engineering (7th ed.). Addison-Wesley. ISBN: 0-321-
21026-3

14. Suvee, D., Vanderperren, W., & Jonckers V.: JAsCo: an Aspect-Oriented approach tai-
lored for component Based Software Development, Proceedings of the 2nd international
conference on Aspect-oriented software development, Boston, USA, 2003, pp. 21-29.

15. Vanderperren, W., Suvée, D., Verheecke, B., Cibrán, M.A., & Jonckers, V.: Adaptive pro-
gramming in JAsCo, Proceedings of the 4th international conference on Aspect-oriented
software development, March, 2005.

16. Viega, J., Voas, J.: Quality time - Can aspect-oriented programming lead to more reliable
software?, IEEE SOFTWARE, Nov-Dec, 2000, 17(6), pp. 19-21.

17. Wang, B., Liu, X., & Kerridge, J.: Scenario-based Generative Component Adaptation in
.NET Framework, Proceedings of the IEEE International Conference on Information Re-
use and Integration, Las Vegas, USA, November, 2004.

A Tactic-Driven Process for Developing
Reusable Components�

George Kakarontzas and Ioannis Stamelos

Department of Informatics
Aristotle University of Thessaloniki

54124 Thessaloniki, Greece
gkakaron@teilar.gr, stamelos@csd.auth.gr

Abstract. True reusability of components assumes that they not only
offer the functionality prescribed by their APIs, but also that they con-
form to a well-defined set of quality attributes so that we know if a
component can be successfully reused in a new software product. One
of the problems with quality attributes however is that it is hard to
identify the characteristics of components that contribute to their emer-
gence. End-user quality attributes are versatile and difficult to predict
but their occurrence is not of an accidental nature. In this paper we pro-
pose a methodology for the exploration of candidate architectural tactics
during component analysis and design for the achievement of desirable
quality effects. Our approach is based on executable specifications of
components that are augmented with the required tactic-related param-
eters to form a testbed for quality-driven experimentation. We believe
that the proposed approach delivers both reusable components as well
as reusable models.

1 Introduction

Succesful component reuse requires careful consideration in relation to the qual-
ity attributes that a component should satisfy and formal verification of these
attributes for an actual component design. Quality or extra-functional properties
are often viewed from different perspectives. For example the ISO/IEC 9126-1
standard for software product quality [1] suggests that there are internal quality
requirements used to specify the quality of interim products used at the various
stages of development of a software product and external quality requirements
that specify the required product quality from an external view, including the re-
quired quality requirements of end users (quality in use). This standard classifies
internal and external quality properties into six characteristics which are further
subdivided into sub-characteristics. Another classification of quality properties
is a realization-oriented classification [2] that relates component properties with

� This work has been partially funded by the project MISSION-SPM which is co-
funded by the European Social Fund and Hellenic national resources (EPEAEK
II/Archimedes II program).

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 273–286, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

274 G. Kakarontzas and I. Stamelos

system quality properties. This classification suggests that there are five differ-
ent classes of quality properties according to their composition characteristics
(directly composable properties, architecture related properties, derived proper-
ties, usage dependent properties, and system environment context properties).
Classifications such as those mentioned above are useful and indicative of the
need to move closer to the realization of the fundamental properties of software
artifacts that contribute to the emergence of system level properties, as these
properties are perceived from the final users of a system. To put it differently
it is essential to realize what the driving forces of end system quality are. How-
ever this is a difficult issue. As mentioned in [1]: “as the current state of the
art does not provide the support necessary for the purposes of prediction, more
technology should be developed to show the co-relation between internal quality,
external quality and quality in use”. A similar observation is made in [2] that
mentions:“(a problem) specific to component-based systems, is the difficulty of
relating system properties to component properties”.

An important problem is therefore the identification of the component prop-
erties that relate to specific system quality properties. What sort of features a
component should posses in order to support higher system availability or better
system performance so that we can safely assume that it is suitable for reuse in
a given product?

Viewing the same issue from the opposite direction we are faced with the
problem of the absence of the closed-world assumption [3]. The component de-
veloper is asked to produce components of high-quality to be reused in various
systems. However the component developer cannot assume a closed world for
his/her components. If the component is to be truly reusable in future systems
requiring various quality properties and varying degrees of support for the same
quality properties the obvious question is how it should be built to achieve that.
The component developer cannot make the required assumptions and further-
more he/she cannot test the final product (the component) under specific system
requirements, since the system is absent when the component is built.

A theory for the identification of component responsibilities relevant to a
specific quality attribute is the theory of architectural tactics [9, 4, 6]. One possible
way to address the closed-world assumption problem is the construction of a
model program[5]. Model programs are system specifications written in a suitable
(usually formal) specification language. The model program, among other things,
can be used to simulate the conditions under which the component is to be used
and its execution can offer substantial insight as to what architectural tactics
should be applied to make the component more reusable in a number of possible
contexts. In other words model program execution provides the oracle for the
decision whether the model satisfies the requirements and whether the selected
architectural tactics solve quality-related problems or not.

In the following Sect. 2 we provide a short introduction to architectural tactics
and model programs and describe the steps of our process that uses these two
theories and related tools. In Sect. 3 we provide a small illustrative example on
the application of our process to a server component. Sect. 4 presents related

A Tactic-Driven Process for Developing Reusable Components 275

work and compares our approach to other approaches. Finally in Sect. 5 we
provide future research directions and conclude.

2 The Tactic-Driven Process

Before describing the tactic-driven process in detail we first provide a short
introduction on the two theories that are the cornerstones of our approach:
namely architectural tactics and model programs.

2.1 Architectural Tactics

A recent definition of architectural tactics from [6] is the following: “An archi-
tectural tactic is a means of satisfying a quality-attribute response measure by
manipulating some aspect of a quality attribute model through architectural de-
sign decisions”. Architectural tactics are based on quality attribute models that
determine what is important in relation to the quality attribute under consid-
eration. For example if we are interested in performance then relevant quality
attribute models include scheduling theory and queuing theory. A quality at-
tribute model has a number of independent parameters that determine the val-
ues of a number of dependent parameters. Choosing among the available quality
attribute models depends on which are the dependent parameters of interest. For
example if we are interested in worst-case latency then scheduling theory is more
appropriate than queuing theory. The application of one or more architectural
tactics can satisfy the required quality-attribute response.

2.2 Model Programs

A definition of a model program given in [5] is the following: “A model program
P declares a finite set of action methods and a set of (state) variables. A model
state is a mapping of state variables to concrete values.”. Model programs are
developed in a suitable formal language which is executable. In the case of the
tool described in [5] model programs can be developed in the Abstract State
Machine Language (AsmL), a formal language based on the theory of Abstract
State Machines [7]. This is the language that we use for the illustration of our
process in this paper.

2.3 A Description of the Tactic-Driven Process

The steps of our proposed process are those depicted in the activity diagram in
Fig. 1. The steps are the following:

1. Create a tentative formal model or modify an existing model by including the
relevant independent and dependent parameters : This is the first step of the
tactic-driven process and in this step the designer creates a tentative model
for the component under implementation using a suitable formal language.
The model provides abstractions for the environment around the component

276 G. Kakarontzas and I. Stamelos

Create a tentative formal
model or modify an

existing model by including
the relevant independent

and dependent
parameters

Create test scenarios for
the quality attribute under

consideration

Scenario Execution

[success]

Select a tactic or a set of
tactics from the knowledge

base of available tactics
that may positively
influence the quality

response

[failure]

Consider relaxing the
quality requirements

[no available tactics]

Apply the selected tactic or
tactics to the model

[else]

Produce the component
documentation stating

clearly any environmental
assumptions

Fig. 1. The steps of the tactic-driven process

under implementation. It also includes the relevant parameters (independent
and dependent) for the quality attribute of interest. It is assumed that in a
pre-process step the designer determined what the suitable quality attribute
model for the quality attribute under examination is. This might be achieved
with a process similar to that described in [6].

2. Create test scenarios for the quality attribute under consideration: Here the
designer applies expertise and judgment to instrument test scenarios that
are relevant to the quality attribute under consideration. These scenarios
should be conclusive in nature: they should act as oracles for the decision
whether the quality attribute response is achieved or not.

3. Scenario Execution: After the construction of the scenarios the designer can
execute them to decide whether the model satisfies the quality response
desired or not. The output of this step will indicate if further manipulation
of the model is necessary.
(a) [If the scenario execution was unsuccesful] Select a tactic or a set of

tactics from the knowledge base of available tactics that may positively
influence the quality response: At this step the designer having failed to
achieve the desired quality response selects a tactic from the available
tactics that may have a positive impact on the desired quality response.
It may be the case that the designer needs to select a set of tactics
instead of just one, since some tactics require the application of others.
For example fault recovery tactics (e.g. active or passive redundancy)
require that some fault detection tactics are applied first (e.g. heartbeat).

A Tactic-Driven Process for Developing Reusable Components 277

Depending on whether or not there are more available tactics to consider
this step may have two possible outcomes:
i. [If there are available tactics] Apply the selected tactic or tactics to

the model : At this step the designer applies the selected tactic or
tactics to the model and repeats the “Scenario Execution” step.

ii. [If there are no available tactics] Consider relaxing the quality re-
quirements : If all the set of available tactics in relation to the qual-
ity response under investigation is exhausted and the designer still
cannot achieve the desired quality response, he/she may consider
relaxing the quality requirements and repeat the first step of the
process by modifying the model.

(b) [If the scenario execution was succesful] Produce the component docu-
mentation stating clearly any environmental assumptions: The model it-
self is the most valuable deliverable that the process produces. It states
clearly the conditions under which the component achieves the required
quality response (the environmental assumptions). The model may be
augmented with explanations on the rational of the decisions taken in
the form of text, pictures etc. If the modeling language used supports lit-
erate programming (as AsmL does) then the explanations and the model
can be part of the same executable document.

After the documentation step the process ends. The designer may repeat the
whole process again considering this time other quality properties of interest.

3 Server Component Example

To illustrate our proposed process we will follow the steps of the process for a
small model of a server component. The component serves a number of requests
that arrive in the server’s component queue. The component offers an interface
with two methods: a Compute method and a ComputeAndUpdateDBmethod. The
first method performs a computation that takes approximately 10 milliseconds
to complete, whereas the second method performs the same computation but
at the end also updates a database. The database step of the second method is
an expensive operation compared to the computation step and requires approxi-
mately 100 milliseconds to complete. The arrival rates of the two methods follow
the exponential distribution with an arrival mean of 100 ms for both methods.
Internally the component uses a queue where requests are placed while the com-
pute engine part of the component is busy. When the compute engine is idle
it selects a request from the queue and services the request. Pictorially this is
depicted in Fig. 2.

For this example we are interested for the performance of our component. Our
main concern is latency: the time it takes for the service of a request including
the waiting queue time and the service time. We require that the component
performs the first method with a latency no more than 40 ms in average. On the
other hand the method that performs the expensive database operation should
also be close to the average service time of the operation. These are the quality
requirements that our model should satisfy.

278 G. Kakarontzas and I. Stamelos

Compute
Engine

Database
Component

service

Server Component

Request
Queue

Fig. 2. The server component example

3.1 Create a Tentative Formal Model or Modify an Existing
Model by Including the Relevant Independent and Dependent
Parameters

In this step we construct a model program for the system under implementation.
The model program is a simplification of the component for simulation, testing
and exploration. We have used the Abstract State Machine Language (AsmL)
[8] for this example. AsmL is a language based on the theory of Abstract State
Machines [7]. It is an executable specification language and is fully interoperable
with the other languages of the .NET platform. AsmL generates assemblies that
can be executed from the command line or packaged as COM components and
AsmL programs can also be explored with test exploration tools [10] such as the
AsmL Test tool or Spec Explorer [5]. These tools can also generate tests that
can be used for the conformance checking of an actual implementation of the
model.

We have a number of agents executing in parallel in our model. A Distributed
Abstract State Machine involves a number of agents executing in parallel. AsmL
doesn’t provide at the moment support for true concurrency, it is however pos-
sible to simulate it with interleaving as described in detail in [11]. To achieve
this we introduce an abstract base class Agent with an abstract Proceed()
method and several agents extend this class providing their own implementation
of Proceed(). All these agents fire at each step of the execution of the machine
and execute their respective Proceed() method.

abstract class Agent
abstract Proceed()

class Clock extends Agent
class Arbitrator extends Agent
class Server extends Agent
class ComputeClient extends Agent
class DBClient extends Agent

The Clock agent simulates the clock of our model. The Arbitrator agent se-
lects a request for service from the incoming queues and assigns it to a Server
component for execution. The Server agent simulates the server component.
The two client agents (ComputeClient and DBClient) simulate the clients of
the component producing requests for the Compute and ComputeAndUpdateDB
methods respectivelly.

A Tactic-Driven Process for Developing Reusable Components 279

A Request is a placeholder class for a request that clients make to the server
component. Each request has a status recording the current state of the request
and a type: it can either be a request for the Compute method or a request for the
ComputeAndUpdateDB method. We declare enumerations for the state and the
type of a request. We also embed in this class variables to record the execution
times of each request for performance analysis.

enum Status
Compute
Blocked
DBUpdate
Finished

enum RType
ComputeType
DBType

class Request implements System.IComparable
var whenArrived as Double
var rtype as RType
var whenStarted as Double = 0.0
var whenFinished as Double = 0.0
var whenToUnblock as Double = 0.0
var status as Status = Compute
Request(whenArrived’ as Double, rtype’ as RType)

whenArrived = whenArrived’
rtype = rtype’

public CompareTo(obj as System.Object) as Integer
match obj

r as Request:
return whenArrived.CompareTo(r.whenArrived)

A client generates requests according to an exponential distribution. In our ex-
ample both types of requests arrive with a mean arrival rate of 100 ms. The
client at each step generates a request and if the time has arrived for the gen-
erated request it places it in an incoming queue of requests (a Set of requests).
Each client has its own queue. We show here the code for the ComputeClient
agent. The code for the DBClient agent is similar. We also record the number
of incoming requests.

var incomingCQ as Set of Request = {}
class ComputeClient extends Agent

var exp as Exponential = new Exponential(100)
var nextArrival as Request = null
var inc as Integer = 0
override Proceed()

if nextArrival = null
let when = clock.Now()+exp.NextValue()
nextArrival := new Request(when, ComputeType)

280 G. Kakarontzas and I. Stamelos

else
if nextArrival.whenArrived <= clock.Now()

add nextArrival to incomingCQ
inc += 1
nextArrival := null

The Arbitrator agent at each step chooses an idle server (one that currently
processes no requests) and if there is a request in the union of the two sets
containing the arrived requests, it selects the first request that arrived and assigns
it to the idle server. The choice of the server, if we have more than one, is non-
deterministic. The selection of the first arrival is done with the min selector of a
set comprehension clause on all arrived requests. To use the min selector we had
to make requests comparable in relation to their arrival time by implementing
the System.IComparable interface of the .NET Framework SDK.

class Arbitrator extends Agent
override Proceed()

choose s in servers where s.currentRequest = null
if s <> null

let allRequests = {x | x in incomingCQ+incomingDBQ}
if not allRequests.IsEmpty

let r = (min x | x in allRequests)
s.ProcessRequest(r)
r.whenStarted := clock.Now()
if r.rtype = ComputeType

remove r from incomingCQ
else

remove r from incomingDBQ

Finally the Server agent has a ProcessRequest method that allows the ar-
bitrator to assign requests to it. In its Proceed method it performs either a
ComputeNextStep or a ComputeAndUpdateDBNextStep depending on the actual
type of the current request. The two methods are similar, blocking the current
request as required by the description of the durations for each step of the meth-
ods. When a request finishes the Server agent places the request in an outgoing
set and assigns null to its current request so that it becomes selectable again by
the Arbitrator.

class Server extends Agent
var currentRequest as Request = null
var exp10 as Exponential = new Exponential(10)
var exp100 as Exponential = new Exponential(100)
public ProcessRequest(request as Request)

currentRequest := request
override Proceed()

if currentRequest <> null
if currentRequest.rtype = Compute

A Tactic-Driven Process for Developing Reusable Components 281

ComputeNextStep()
else

ComputeAndUpdateDBNextStep()
ComputeNextStep()

match currentRequest.status
Compute:

currentRequest.whenToUnblock :=
clock.Now()+exp10.NextValue()

currentRequest.status := Blocked
Blocked:

if currentRequest.whenToUnblock <= clock.Now()
currentRequest.status := Finished
currentRequest.whenFinished := clock.Now()
add currentRequest to outgoingComputeRequests
currentRequest := null

ComputeAndUpdateDBNextStep()
match currentRequest.status

Compute:
currentRequest.whenToUnblock :=

clock.Now()+exp10.NextValue()
currentRequest.status := Blocked

Blocked:
if currentRequest.whenToUnblock <= clock.Now()

currentRequest.status := DBUpdate
currentRequest.whenToUnblock :=

clock.Now()+exp100.NextValue()
DBUpdate:

if currentRequest.whenToUnblock <= clock.Now()
currentRequest.status := Finished
currentRequest.whenFinished := clock.Now()
add currentRequest to outgoingDBRequests
currentRequest := null

3.2 Creation of Test Scenarios and Scenario Execution

Our test scenario requires that we run the program with the agents described
and measure the actual latency achieved by the component. We define variables
for each of these agents and the main execution step of the machine calls the
Proceed()method on all of them in parallel until the end of the simulationTime
constant.

var clock as Clock = new Clock()
var server as Server = new Server()
var servers as Set of Server = {server}
var arbitrator as Arbitrator = new Arbitrator()
var cclient as ComputeClient = new ComputeClient()

282 G. Kakarontzas and I. Stamelos

var dbclient as DBClient = new DBClient()
var agents as Set of Agent =

{clock, server, arbitrator, cclient, dbclient}
Main()

step while clock.Now() <= simulationTime
forall a in agents

a.Proceed()

After the simulation finishes we calculate the average latency for each type of
request. Executing the simulation with these particular values for the indepen-
dent parameters (event rate, service duration etc.) for 10000 ms gives an average
latency of both types of requests in the area of 1000 ms. This shows that requests
wait for a long time until they receive service. The scenario execution is therefore
considered to be a failure and we proceed with the next step of selecting tactics
that may positively influence the quality response.

Performance tactics from [4] and [9] include those depicted in Fig. 3.

Performance

Managing
Demand

Arbitrating
Demand

Managing Multiple
Resources

Increase
 Computation Efficiency
Reduce
 Computation Overhead
Manage Event Rate
Control Frequency of
 Sampling
Bound Execution Times
Bound Queue Sizes
Control the Demand for
 Resources

Increase Logical
 Concurrency
Determine Appropriate
 Scheduling Policy
Use Synchronization
 Protocols

Increase Physical
 Concurrency
Balance Resource
 Allocation
Increase the Locality
 of Data

Fig. 3. Performance tactics

As we described in Sect. 2 this step of the process can be applied many times
until we are satisfied with the system quality response or until we are convinced
that the quality response cannot be met. For this example we carried out two
such process steps.

The first step was to apply the “Bound Queue Sizes” tactic. We bounded
the incoming queue sizes to four requests each and we measured the latency
again and the number of rejected requests. This required modifications in the

A Tactic-Driven Process for Developing Reusable Components 283

client agents who now placed requests in the incoming queue only if the queue
sizes where less than four. The application of this tactic reduced the latency to
one third of what we had before. It resulted however in rejections of incoming
requests that were increasing as the simulation time increased. This showed that
the system was becoming unstable as the time passed.

The second step was to apply the “Bound Execution Times” tactic. It is clear
that the problem is the long database update request that causes other requests
to queue for long periods or in the bounded queue size design leads to losses
of large number of requests. To remedy this we applied a buffering scheme in
which incoming requests that were updating the database were buffered. We used
a buffer size of 5 requests. Now the method calls to the ComputeAndUpdateDB
method update the buffer instead of the database. This is a much less expen-
sive operation that requires 5 ms in average. Only every five requests the actual
database update takes place and this requires again 100 ms in average. Notice
that the introduction of this buffering scheme bounds the execution times of the
expensive database update method and improves performance but the penalty
is reduced reliability. If the server component crashes before the actual update
takes place, the buffered updates will be lost. Assuming however that this is
acceptable in this case the resulting latency converges for the first type of re-
quests to 40 ms in average and for the second kind of requests to 50 ms. Also
the number of the rejected requests are near zero for both types of request. The
result was the same for increasing simulation times showing that the system is
stable.

We could have applied other tactics to achieve the same or better results. For
example an obvious candidate would be to increase the physical concurrency in-
troducing multiple processors. Assuming however that this was not an option we
turned our attention to other tactics. The important point here is that the tac-
tics catalogue provides a knowledge base from which the designer can choose the
appropriate solution that is acceptable. The designer can even produce multiple
models satisfying different requirements and therefore provide different versions
of the same component suitable for reuse in systems with different requirements.

3.3 Produce the Component Documentation Stating Clearly Any
Environmental Assumptions

At this step the component developer documents the component design stating
clearly any environmental assumptions. In the example given the environmental
assumptions include the mean arrival rates of the requests as well as the fact
that the reduced reliability should be acceptable. It also includes the performance
guarantees given by the component designer for these assumptions. The model
itself can serve as the formal definition of the component explaining in detail the
actual implementation decisions adopted by the designers. With this information
any future user of the component will be in a more informed position to decide
whether or not he/she can use the component for an actual system, than merely
knowing the interfaces of the component and the services that it offers.

284 G. Kakarontzas and I. Stamelos

4 Related Work

Quality has received considerable attention from the component community
since it is the single most important issue for the successful reusability of com-
ponents. Some recent relevant works to ours include the following.

In [12, 13] detailed queuing theory models are presented that can be used for
the prediction of the performance of Java 2 Enterprise Edition (J2EE) applica-
tions. The models capture with details the important factors of delay in a J2EE
container and can be used to guide the designer of J2EE applications. Detailed
quality models such as these, can provide the basis for the development of ac-
curate environment models that can be reused for the modeling of components
for these environments with our proposed methodology.

In [14] a prediction-enabled component technology (PECT) is presented. A
PECT comprises a construction framework and one or more reasoning frame-
works used for the interpretation of PECT. The construction framework com-
prises an Abstract Component Technology (ACT) and tools (editors, constraint
checkers, repositories etc). PECT is a very ambitious project that tries to address
several long-lasting issues related to quality in component assemblies. One par-
ticular difficulty with PECT relates to the use of multiple reasoning frameworks.
Issues such as the substitutability or the compatibility of reasoning frameworks
are difficult to address. The interested reader can refer to section 6 of [14] for
more details on this issue.

The Attribute-Driven Design method [15, 9] is a method for designing software
architectures that also uses architectural tactics as a driver. Whereas ADD aims
at the design of software architectures and is essentially a top-down approach,
our method assumes an environment (e.g. component framework or product line
architecture) and aims at designing a component so that it fits in this environ-
ment.

Architectural tactics are not specific to performance but cover instead a large
and ever-growing body of quality characteristics including some of the less well
understood. For example in [16] a list of tactics for usability is presented along
with the usability benefits by the application of each tactic. Also in [9] tactics are
given for controlling availability, modifiability, performance, security, testability
and usability.

Abstract State Machines have been used extensively for the modeling of com-
plex systems both software and hardware. The interested reader can refer to
the Abstract State Machines website [17] for more information. In [18] AsmL is
used for conformance checking of an actual component implementation against
its specification. Conformance checking is an important next step to the process
described here since it can prove or disprove the claim that a component actually
conforms to a given model.

5 Conclusion and Future Research Directions

In this paper we have presented a tactic-based process for the development of
reusable components that is based on quality requirements and experimentation

A Tactic-Driven Process for Developing Reusable Components 285

using a model of the component and the environment in which it is to be placed.
Although the small example presented is about performance, the process can
be applied to other quality attributes as well, with the requirement that their
quality properties can be calculated by algorithms.

The choice of Abstract State Machines for performance modeling is not the
most obvious choice. Various others formal notations and their respective tools,
such as the Performance Evaluation Process Algebra [19], are arguably more ap-
propriate for modeling performance since they were made specifically for that.
Our choice of ASM comes from the fact that our proposed process is not only
concerned with performance. We want to be able to model a variety of arbitrary
quality properties and validate the model response to them. Furthermore this
validation must take place incrementally yet at the end simultaneously for all
the required quality properties since very often the satisfaction of a quality re-
sponse for one quality property renders the validation of another false (as the
performance/reliability tradeof in our example). Also the ASM community has
been very active in providing formal semantics for the UML metamodel and the
various UML models (e.g. [20]). Mapping of UML constructs to ASM provides
the opportunity to construct CASE tools that will hide the complexity of writ-
ing ASM (and in general formal) specifications from the average developer and
software engineer. The developers will instead use (possibly a well-defined subset
of) UML and the tool will provide the necessary mappings to ASM and the sub-
sequent verification of the design. Finally, a specific to AsmL and .NET benefit
is that AsmL is a first class citizen of the .NET language runtime. The inter-
operation of AsmL specifications and .NET components opens the possibility of
mixed executable systems where some components are executable models and
some are specifications. We can imagine very useful applications of this includ-
ing the construction of reusable specifications of arbitrary environments where
actual component implementations for them can be tested as well as the reverse
where the environment exists and the component under implementation can be
specified and tested prior to the implementation effort.

In the future we plan to move to two directions. The first is the use of our
methodology for quality attributes less well understood than performance, such
as modifiability and the application of our process to large projects. The second
is the investigation of ways to make the process as automated as possible. One
first step in this direction that we plan to investigate is the construction of a
tool that will use a repository of architectural tactics and the model as input to
guide the designer in the choise of the architectural tactics that might be useful
in improving the quality response.

References

1. ISO/IEC 9126-1: “Software Engineering - Product Quality - Part 1: Quality
Model”. ISO/IEC Standard, ISO/IEC 9126-1:2001(E), 2001

2. Ivica Crnkovic et. al.: “Concerning Predicatbility in Dependable Component-Based
Systems: Classification of Quality Attributes”. in R.de Lemos et. al. (Eds.): Archi-
tecting Dependable Systems III, LNCS 3549, pp. 257-278, 2005.

286 G. Kakarontzas and I. Stamelos

3. Clemens Szyperski: “Component technology: What, Where, and How?”. Invited
talk in ICSE ’03: Proceedings of the 25th International Conference on Software
Engineering, IEEE Computer Society, pp. 684–693, 2003.

4. Felix Bachmann et. al.: “Illuminating the Fundamental Contributors to Software
Architecture Quality”. Technical Report, CMU/SEI-2002-TR-025, Software Engi-
neering Institute, Carnegie Mellon University, 2002.

5. Margus Veanes et. al.: “Online testing with model programs”, SIGSOFT Softw.
Eng. Notes, vol. 30, no. 5, pp. 273–282, ACM Press, 2005

6. Felix Bachmann et. al.: “Deriving Architectural Tactics: A Step Toward Methodical
Architectural Design”, Technical Report, CMU/SEI-2003-TR-004, March 2003

7. Yuri Gurevich: “Evolving Algebras 1993: Lipari Guide”, Specification and Valida-
tion Methods, ed. E. Borger, Oxford University Press, pp. 9–36, 1995

8. AsmL Website: http://research.microsoft.com/fse/asml, 2005
9. Len Bass, Paul Clements and Rick Kazman: “Software Architecture in Practice,

2nd ed.”, Addison-Wesley, 2003
10. Mike Barnett et. al.: “Validating Use-Cases with the AsmL Test Tool”, in proc. of

the Third International Conference On Quality Software (QSIC03), p. 238, IEEE,
2003

11. Uwe Glässer, Yuri Gurevich and Margus Veanes: “Abstract Communication Model
for Distributed Systems”, IEEE Transactions on Software Engineering, vol. 30, no.
7, pp. 458-472, July, 2004

12. Yan Liu and Ian Gordon: “Performance Prediction of J2EE Applications Using
Messaging Protocols”, in proc. CBSE 2005, LNCS 3489, pp. 1-16, 2005

13. Yan Liu et. al.: “Predicting the Performance of Middleware-based Applications
at the Design Level”, in proc. of the 4th international workshop on Software and
performance (WOSP’04), pp. 166–170, ACM Press, 2004

14. K. C. Wallnau, “Volume III: A Technology for Predictable Assembly from Certi-
fiable Components”, Carnegie Mellon University Software Engineering Institute,
TECHNICAL REPORT CMU/SEI-2003-TR-009, Apr. 2003

15. Len Bass et. al.: “Quality Attribute Design Primitives and the Attribute Driven
Design Method”, in proc. of the 4th International Workshop on Software Product
Family Engineering (PFE 2002), LNCS 2290, pp. 169–186, 2002.

16. Len Bass and Bonnie E. John: “Linking usability to software architecture patterns
through general scenarios”, Journal of Systems and Software, vol. 66, no. 3, pp.
187–197, 2003

17. ASM website: http://www.eecs.umich.edu/gasm/, 2005
18. Mike Barnett and Wolfram Schulte: “Spying on Components: A Runtime Verifi-

cation Technique”, OOPSLA 2001 Workshop on Specification and Verification of
ComponentBased Systems, 2001

19. J. Hillston: “A Compositional Approach to Performance Modelling”, Cambridge
University Press, 1996

20. Alessandra Cavarra, Elvinia Riccobene and Patrizia Scandurra: “Integrating UML
Static and Dynamic Views and Formalizing the Interaction Mechanism of UML
State Machines”, in proc. of the ASM 2003, LNCS, pp 229-243, 2003

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 287 – 297, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Does Refactoring Improve Reusability?

Raimund Moser1, Alberto Sillitti1, Pekka Abrahamsson2,
and Giancarlo Succi1

1 Center for Applied Software Engineering, Free University of Bolzano-Bozen,
Piazza Domenicani 3, Italy

{rmoser, asillitti, gsucci}@unibz.it
2 VTT Electronics, Oulu, Finland
pekka.abrahamsson@vtt.fi

Abstract. The improvement of the software development process through the
development and utilization of high quality and reusable software components
has been advocated for a long time. Agile Methods promote some interesting
practices, in particular the practice of refactoring, which are supposed to im-
prove understandability and maintainability of source code. In this research we
analyze if refactoring promotes ad-hoc reuse of object-oriented classes by im-
proving internal quality metrics. We conduct a case study in a close-to indus-
trial, agile environment in order to analyze the impact of refactoring on internal
quality metrics of source code. Our findings sustain the hypothesis that refactor-
ing enhances quality and reusability of – otherwise hard to reuse - classes in an
agile development environment. Given such promising results, additional ex-
perimentation is required to validate and generalize the results of this work.

1 Introduction

In Extreme Programming (XP) much emphasis is given on an agile, iterative and
customer oriented way of how to develop software. Among the top priorities of XP
are (a) customer satisfaction through continuous delivery of valuable software and (b)
embracing changing requirements (http://agilemanifesto.org). The practices of XP are
tailored to achieve such goals: iterative and informal planning, simple design, con-
tinuous refactoring of the code, pair programming, test first and continuous integra-
tion – just to mention a few [3]. Most of these practices are intended to be used during
development and maintenance and seem to keep at least in part their promises [21].

However, XP does not address explicitly the issue of software reuse as one of its
practices. This may wonder since many believe that software reuse provides “the key
to enormous savings and benefits in software development” [24], [13]. XP per se does
not aim at developing software for possible future reuse in order to avoid overhead
during development. Keep it simple and develop only what the customer really wants
is one of the key principles of XP.

On the other hand we think that XP – compared to more traditional development
methodologies - intrinsically guides software engineers to develop software, which is
of high quality and therefore suited for ad-hoc reuse. In particular the practice of con-
tinuous refactoring may improve internal quality metrics and affect reusability of a
software system in a positive way [7]. Reusability is a rather high-level quality metric

288 R. Moser et al.

that consists of several internal and external properties of the software and of the
development process [15]. Poulin [24] introduces a possible taxonomy of reusability
metrics: He differentiates between empirical and qualitative methods and gives an
overview of several models to assess reusability. Dandashi and Rine [11] decompose
reusability into direct and indirect quality attributes, namely: adaptability, complete-
ness, maintainability, and understandability. Refactoring seems to enhance particu-
larly the last two quality attributes [5], [25]: In his book on refactoring [16] Fowler
stresses over and over that one of the key points of refactoring is to make the code
easier to understand and to read. We believe this should affect in a positive way also
ad-hoc reuse of otherwise not reusable pieces of software.

A proven way to measure reusability is to analyze how often parts (classes, meth-
ods, etc.) of a software system are reused in a product. Such reusability frequency and
amount of reuse metrics are proposed and used by several researchers [13], [10], [17].
In this research we do not follow this approach, as we do not have such data. Our idea
is to analyze whether refactoring enhances reusability by analyzing its impact on
some of the internal reusability metrics proposed and validated in the work of Dan-
dashi et al. [11]. Thus, in order to assess reusability we employ only a restricted set of
internal product attributes that are available and monitored during development. We
do not take into account any external and high-level product or process metrics. In
doing so we risk failing in characterizing properly software reusability. However, we
think that our approach is in part justified by the findings of other researchers, in
particular by [8], [2], and [11].

The paper is organized as follows: In Section 2 we present our research methodol-
ogy and define the research question; in Section 3 the results of a case study are pre-
sented and discussed; in Section 4 we refer to some issues regarding the limitations of
our approach and future plans. Finally, conclusions and implications of the investiga-
tion are drawn in Section 5.

2 A Methodology for Evaluating the Impact of Refactoring on
Code Quality

In this section at first we describe the metrics we use for assessing code quality - with
particular focus on reusability. Afterwards, we develop a model for evaluating how
refactoring may affect internal quality metrics, which are used to assess reusability of
the software system during development. Finally we state our research questions.

2.1 Internal Quality Metrics That Affect Reusability

Our research question is to assess whether refactoring facilitates the development of
high-quality code and as a consequence ad-hoc reusability or not. To answer such
question first we have to define carefully what we mean by high-quality and reusabil-
ity and how we measure it. Code quality is a rather vague term for describing certain
quality attributes of a software system and can be decomposed in different ways into
lower-level metrics [15]. In this research we focus on internal properties of the soft-
ware that are considered to be relevant for its reusability. In particular, we follow the
approach proposed by Dandashi and Rine [11] and use two different sets of metrics:

 Does Refactoring Improve Reusability? 289

• One for micro level measurements (measurements at a method level)

• And one for macro level measurements (measurements at a class level)

For the micro level measurements we employ McCabe’s cyclomatic complexity of
a method [23] and the number of Java statements per method. To arrive at a measure
for the whole class, the highest measure is used as a representative measure of the
corresponding class measure. For the macro level measurements we use the Chidam-
ber and Kemerer (CK) set of object-oriented metrics [8].

The motivation for choosing this set of metrics is twofold: First, some of them such
as the CK metrics are among the best-understood and validated metrics for object-
oriented systems and therefore we can be more confident in their expressiveness [2].
Second, the tool we use for collecting these metrics is able to collect them in an auto-
matic and non-invasive way - a fundamental requirement for data collection in an XP
process [19].

Several empirical studies put the CK metrics into relationship with software qual-
ity, in particular with maintainability, reusability, and reliability. Li and Henry [22]
for example show that the CK metrics are useful to predict maintainability. Basili et
al. [2] investigate the relationship between the CK metrics and code quality: Their
findings suggest that 5 of the 6 CK metrics are useful quality indicators. However,
such studies are rare in XP-like environments and they do not analyze how the evolu-
tion of the CK metrics during development is affected by refactoring. Table 1 summa-
rizes the metrics we use in this research as indicators for reusability.

Table 1. Selected internal product metrics as indicators for reusability

Metric name Level Definition

MAX_LOC Class Maximum number of Java statements of all methods in a class

MAX_MCC Class Highest McCabe’s cyclomatic complexity of all methods in a
class

CBO Class Coupling Between Object classes (CK)

LCOM Class Lack of Cohesion in Methods (CK)

WMC Class Weighted Methods per Class (CK)

RFC Class Response Of a Class (CK)

DIT Class Depth of Inheritance Tree

NOC Class Number Of Children

Dandashi and Rine [11] find in their research a correlation between the CK and
complexity measures and external high-level quality attributes for reusability. In this
work we rely on their findings, as we do not analyze directly the impact of refactoring
on external reusability measures. However, we are well aware that we conduct a study
in a very different environment; the fact that we consider only a restricted set of inter-
nal product metrics for assessing reusability limits to some extent the validity of our
findings and has to be addressed in a future study.

290 R. Moser et al.

2.2 An Approach to Assess the Impact of Refactoring on Internal Quality Metrics
During Development

In section 2.1 we choose a set of metrics, which is known to be useful as internal
measures for quality of a software system. However, we do not know a priori the
range of values of these metrics that would indicate good or bad quality. Analyzing
historical data or several similar projects can only – if at all – derive such thresholds
[4]. We follow a different strategy, as we do not seek to associate absolute values of
the metrics in Table 1 to different classes of quality, but rather analyze the changes of
them during development.

Our approach is the following: First, we identify a set of candidate classes that are
likely to be considered for reuse. Afterwards, we monitor the daily changes of our
quality metrics for each class during development. Finally we compare the average of
these daily changes with the change each class gains after it has been refactored. This
allows us to quantify the impact of refactoring on internal quality metrics compared to
their overall evolution during development.

A bit more formally we can define our method as follows.
Let Mi ∈ M={MAX_MCC, MAX_LOC, CBO, RFC, WMC, DIT, NOC, LCOM} be one
of the quality metrics listed in Table 1. In a first step we average their daily changes
for each candidate class over the whole development period not including days when
the class has been refactored. We denote this average value for metric Mi by ΔMi. N in
equation (1) is the total number of development days; Δt is a time interval of 1 day
and R is the set of all days during which developers have refactored a particular class.

RN

tkMtkM
M

N

Rk
k ii

i −

Δ⋅−−Δ⋅
=Δ ∉

=1))1(()(
 (1)

By ΔRi we denote the average of the daily changes of quality metric Mi only for the
days (k ∈ R) in which a class has been refactored. To assess whether refactoring im-
proves quality of a class we compute its ΔRi and ΔMi values and compare them with
each other: If ΔRi is negative and significantly lower than ΔMi we may conclude that
refactoring improves quality metric Mi compared to its standard evolution during
development.

In order to apply our method to a real system we not only need to collect the daily
evolution of source code metrics but also to identify a set of candidate classes and
refactoring activities. Regarding the first issue we proceed as follows: We analyze the
design document and use the description provided by developers and our own experi-
ence to find classes, which are either explicitly developed for reuse or at least are
promising to be reused in the same or similar products. We exclude any classes that
are highly dependent on the specific application such as classes dealing with the user
interface, product specific data representation/processing or classes holding hard
coded data (constants). The identification of candidate classes is a subjective process
and therefore we may not identify all relevant classes. However, in an XP process
development is not targeted specifically to reusability and in principle every class that
is not tightened too much with a particular application feature could be reused in an
ad-hoc manner.

 Does Refactoring Improve Reusability? 291

The second issue we have to address is: How can we identify days in which a class
has been refactored? Currently we are working on a method that extracts such infor-
mation automatically from a CVS repository by using source code change metrics
information (for the basic idea see [12]). This work is still in an early phase and can-
not be used for this research. However, for the case study we present in section 3
developers have created user stories for refactoring activities and by analyzing them
we know which classes have been refactored when.

To summarize our method for assessing the impact of refactoring on quality and
reusability we stress again that it has to be taken with a grain of salt, as we do not
include many important factors such as experience of developers, development tools,
or the stability of the application domain. However, we think that by analyzing the
change of important internal quality metrics induced by refactoring we can indicate
whether refactoring - by delivering easy to reuse and maintain code - supports ad-hoc
reuse or not.

2.3 Research Question

The goal of this research is to determine whether refactoring improves code quality
and as a consequence supports ad-hoc reuse. Our objective is to present evidence that
will allow us to reject the null hypothesis:

• H0: The changes of quality metric Mi induced by refactoring (ΔRi) are not
different from the average changes during development (ΔMi) for classes that
are likely to be reused in an ad-hoc manner.

And to accept the alternative hypothesis:
• H1: The changes of quality metrics Mi induced by refactoring (ΔRi) are dif-

ferent (preferably lower) from the average changes during development
(ΔMi) for classes that are likely to be reused in an ad-hoc manner.

In section 3 we present a case study we run in order to reject or accept the null hy-
pothesis stated above.

3 Case Study

In this section we present a case study we conducted in a close-to industrial environ-
ment in order to analyze quality enhancement and promotion of ad-hoc reuse by
refactoring in a software project developed using an agile, XP-like methodology [1].
The objective of the case study is to answer our research question posed in section 2:
First, we collected in a non-invasive way the metrics listed in Table 1; afterwards, we
analyzed their time evolution and fed them into equation (1) in order to compute their
values for ΔMi. Then we selected candidate classes for reuse and collected their
change metrics after they have been refactored (ΔRi). Finally, we used a statistical test
to determine whether or not it is possible to reject our null hypothesis.

3.1 Description of the Project and Data Collection Process

The object under study is a commercial software project developed at VTT in Oulu,
Finland. The programming language in use was Java. The project was a full business

292 R. Moser et al.

success in the sense that it delivered on time and on budget the required product, a
production monitoring application for mobile, Java enabled devices. The development
process followed a tailored version of the Extreme Programming practices [1], which
included all the practices of XP but the “System Metaphor” and the “On-site Cus-
tomer”; there was instead a local, on-site manager that met daily with the group and
had daily conversations with the off-site customer. Two pairs of programmers (four
people) have worked for a total of eight weeks. The project was divided into five
iterations, starting with a 1-week iteration, which was followed by three 2-week itera-
tions, with the project concluding in a final 1-week iteration.

The developed software consists of 30 Java classes and a total of 1770 Java source
code statements (denoted as LOC). Throughout the project mentoring was provided
on XP and other programming issues according to the XP approach. Three of the four
developers had an education equivalent to a BSc and limited industrial experience.
The fourth developer was an experienced industrial software engineer. The team
worked in a collocated environment. Since it was exposed for the first time to the XP
process a brief training of the XP practices, in particular of the test-first method was
provided prior to the beginning of the project.

To collect the metrics listed in Table 1 we used our in-house developed tool PROM
[26]. PROM is able to extract from a CVS repository a variety of standard and user
defined source code metrics including the CK metric suite. Not to disrupt developers
we set up the tool in the following way: Every day at midnight automatically a check-
out of the CVS repository was performed, the tool computed the values of the CK and
complexity metrics and stored them in a relational database. In this way we obtained
directly the daily evolution of the CK metrics, LOC and McCabe’s cyclomatic com-
plexity.

3.2 Results

We were able to collect the daily evolution of the metrics in Table 1 for the entire
period of development, which was 8 weeks, apart from 3 days. In these days develop-
ers apparently did not check-in the source code and therefore we had to omit them
from our analysis.

The design of the developed system is based on the MVC pattern [6], the Broker
architectural pattern [6] and several standard design patterns described in [18]. We
think that some basic classes of these patterns – their importance is also emphasized
by the design document – are particularly interesting to be considered for reuse. Out
of them we choose a subset of classes, which have been refactored during develop-
ment. We can infer this information from two user stories that have been implemented
specifically for refactoring tasks and comments added in the respective classes.

We select in total five candidate classes and compute in a first step the daily
changes of the metrics for each of them omitting the days when they have been refac-
tored. We denote the five classes by A, B, C, D, and E. After we compute the average
of these changes for all days in which a class has been refactored (the considered
classes have been refactored at most on two different days during development). Ta-
ble 2 shows the results: For each metric and candidate class we indicate the average
changes during development (without refactoring), ΔMi, the average changes induced
by refactoring, ΔRi, and whether or not we can reject our null hypothesis, H0. We

 Does Refactoring Improve Reusability? 293

accept or reject H0 by applying a one-sample Wilcoxon rank sum test [20]: We test
whether a sample of changes for metric Mi has a median ΔRi or not. For the test we
use a significance level of α=0.05.

Table 2. Average daily changes of quality metrics in case of refactoring (ΔR) and development
(ΔM). A 1 in the column with heading H means that we can reject the null hypothesis for the
particular class and metric, 0 means that we cannot reject the null hypothesis. Values are
rounded to their closest integer.

Class CBO RFC WMC LCOM

 ΔM ΔR H ΔM ΔR H ΔM ΔR H ΔM ΔR H

A 0 0 0 0 1 1 1 -1 1 0 -1 1

B 1 -4 1 1 -4 1 0 0 0 0 0 0

C 1 0 0 2 -5 1 4 0 0 1 0 0

D 1 -1 1 1.4 -2 1 2 0 0 1 0 0

E 1 -1 1 3.5 -2 1 2 3 1 0 0 0

 MAX_MCC MAX_LOC DIT NOC

A 0 -1 1 0 0 0 0 0 0 0 0 0

B 0 0 0 2 -2 1 0 0 0 0 0 0

C 3 0 0 6 -46 1 0 0 0 0 0 0

D 3 -2 1 0 0 0 0 0 0 0 0 0

E 1 0 0 10 -20 1 0 0 0 0 0 0

The interpretation of the numbers in Table 2 is straightforward: For every candi-
date class there are at least two quality metrics that improve significantly after it has
been refactored (compared to the average evolution during development). In particu-
lar classes A and E show a notable enhancement: These two classes provide general
interfaces to the user interface and database and it is likely that they will be reused in
a similar application.

By investigating the different metrics we notice that not all of them are affected in
the same way by refactoring: The metrics related to inheritance and cohesion for ex-
ample are not at all or only in a negligible way changed by the refactorings applied in
the project. This could be explained by the fact that the software under scrutiny is
relatively small: It does not use deep inheritance hierarchies and only in a limited way
inheritance as a mechanism for reuse. Therefore, it is quiet obvious that no refactoring
dealing with inheritance has been applied (it was not necessary to restructure code due
to complexity caused by inheritance). As for LCOM several researchers have ques-
tioned its meaning and the way it is defined by Chidamber and Kemerer [9]; the im-
pact of LCOM on software reusability is little understood by today and therefore we
do not analyze it further in this research.

294 R. Moser et al.

The highest benefit of refactoring show the CBO and RFC metrics: They express
the coupling between different classes and the complexity of a class in terms of
method definitions and method invocations. We believe that these two metrics are
strong indicators for how difficult it is to reuse a class: A high value of RFC makes it
difficult to understand what the class is doing and a high value of CBO means that the
class is dependent on many external classes and difficult to reuse in isolation. Both
situations prevent it from being easily reused. For three out of the five candidate
classes refactoring improves significantly both the RFC and CBO values and as such
clearly makes them more suitable for ad-hoc reuse.

Refactoring seems also to lower method complexity: In all the classes either the
method with the maximum lines of code or the one with the highest cyclomatic com-
plexity have gained a notably improvement after refactoring. Again, classes with less
complex methods are easier to reuse.

Summarizing our results we can reject hypothesis H0 for several metrics Mi (in par-
ticular for the RFC and CBO metric) but not for all of them (like the inheritance re-
lated metrics) and not for all classes we selected. We can conclude that refactoring
improves for every class we analyze at least two internal metrics that are important
for reusability; moreover, for most of them it lowers significantly coupling and
method invocation complexity – two “code smells” [14] that often prevent classes
from being reused in an ad-hoc manner. Overall the results of this case study give
strong evidence that refactoring supports ad-hoc reuse in an XP-like development
environment.

4 Threats to Validity and Future Work

This research addresses the question whether refactoring supports ad-hoc reuse or not.
We try to answer it by analyzing and comparing the evolution of quality metrics of a
software system during “traditional” development and after phases of refactoring. Our
approach considers only a set of internal product metrics that may be useful and
important as reusability indicators. Of course, this is only half of the story and a com-
plete model should also consider external product and process metrics that character-
ize reusability.

Regarding the internal validity of this research we have to address the following
threats:

• The subjects of the case study are heterogeneous (three junior and one ex-
perienced developers) and use for the first time an XP-like methodology.
This could affect seriously our findings, as for example junior developers
may behave very different than experienced ones. Also the kind and applica-
tion of refactorings depend highly on the experience of a developer and
could lead to different results in other environments. Moreover, a learning ef-
fect could be visible and for example influence the evolution of reusability
metrics during the project.

• We do not validate the approach we propose and use in this case study. I.e.
we do not analyze if refactored classes that show an improvement of internal
quality metrics are reused more often and more easily in the same or similar
projects. Such validation has to be addressed in a future study.

 Does Refactoring Improve Reusability? 295

• Finally, the choice of candidate classes, quality metrics and the time interval
we use to compute their changes is subjective. Although we tried to motivate
our choices we plan to consider variations in metrics and time interval in fu-
ture experiments in order to confirm or reject the conclusions of this research.

Altogether, as with every case study the results we obtain are valid only in the spe-
cific context of the experiment. In this research we analyze a rather small software pro-
ject in a highly volatile domain. A generalization to other application domains and XP
projects is only possible by future replications of the experiment in such environments.

5 Conclusions

Although agile processes and practices are gaining more and more importance in the
software industry much more work has to be done to convince managers to introduce
new and innovative development concepts in their companies. This research focuses
on whether refactoring, a key practice of XP, supports ad-hoc reuse or not. Software
reuse is a key success factor for software development and should be supported as
much as possible by the development process itself. We believe that refactoring sup-
ports and enhances ad-hoc reuse in a software project, which does not address reus-
ability as one of its primary goals.

The contribution of this research is twofold: First, we propose a methodology for
assessing if refactoring improves quality and therefore promotes ad-hoc reuse of ob-
ject-oriented classes during development. Second, we conduct a case study in which
we apply our methodology and which allows us to provide in a quantitative way and
in a close-to industrial environment an answer to our research question.

The main conclusion of this research can be summarized as follows:
Refactoring seems to improve significantly important internal measures for reusability
of object-oriented classes written in Java. Therefore, we can sustain our claim that
refactoring has a positive effect on reusability and for sure promotes ad-hoc reuse in
an XP-like development environment.

Of course refactoring as any other technique is something a developer has to learn
and to train. First, managers have to be convinced that refactoring is very valuable for
their business; this research should help them in doing so as it sustains that refactoring
– if applied properly – intrinsically delivers code, which is easier to reuse than code
which has not been refactored. Afterwards, they have to provide training and support
to change their development process into a new one that includes continuous refactor-
ing. Agile Methods already use refactoring as one of their key practices and could be
a first choice for developing code in a way that supports - among other benefits such
as good maintainability - also reusability.

References

1. Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J., Korkala, M.,
Koskela, J., Kyllönen, P., and Salo, O.: Mobile-D: An Agile Approach for Mobile Appli-
cation Development. Proceedings of the 19th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA’04, Vancouver,
British Columbia, Canada (2004)

296 R. Moser et al.

2. Basili, V., Briand, L., and Melo, W.L.: A Validation of Object-Oriented Design Metrics as
Quality Indicators. IEEE Transactions on Software Engineering, 22(10): 267-271 (1996)

3. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley (2000)
4. Benlarbi, S., El Emam, K., Goel, N., Rai, S.: Thresholds for Object-Oriented Measures.

Proceedings of 11th International Symposium on Software Reliability Engineering
(ISSRE'00), p. 24 (2000)

5. Bois, B. D., Demeyer, S., Verelst, J.: Refactoring – Improving Coupling and Cohesion of
Existing Code. Belgian Symposium on Software Restructuring, Gent, Belgium (2005)

6. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M.: Pattern oriented
software architecture. Volume 1: A System of Patterns. John Wiley & Sons (1996)

7. Caballero, R., and Demurjian, S.A.: Towards the Formalization of a Reusability Frame-
work for Refactoring. Proceedings of the 7th International Conference Software Reuse:
Methods, Techniques, and Tools, ICSR-7, Austin, TX, USA (2002)

8. Chidamber, S., Kemerer, C.F.: A metrics suite for object-oriented design. IEEE Transac-
tions on Software Engineering, 20(6): 476-493 (1994)

9. Counsell, S., Mendes, E., Swift, S.: Comprehension of object-oriented software cohesion:
the empirical quagmire. Proceedings of the 10th International Workshop on in Program
Comprehension, Paris, France (2002) 33 – 42

10. Curry, W.E., Succi, G., Smith, M.R., Liu, E., and Wong, R.W.: Empirical Analysis of the
Correlation between Amount of Reuse Metrics in the C Programming Language. Proceed-
ings of the 1999 Symposium on Software Reusability (SSR’99), Los Angeles, Ca, USA
(1999)

11. Dandashi, F., and Rine, D.C.: A Method for Assessing the Reusability of Object-Oriented
Code Using a Validated Set of Automated Measurements. Proceedings of 17th ACM Sym-
posium on Applied Computing (SAC 2002), Madrid (2002)

12. Demeyer, S., Ducasse, S., Nierstrasz, O.: Finding Refactorings via Change Metrics. Pro-
ceedings of the 15th Annual ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA’00, Minneapolis, USA (2000)

13. Devanbu, P., Karstu, S., Melo, W., and Thomas, W.: Analytical and Empirical Evaluation
of Software Reuse Metrics. Proceedings of the 18th International Conference on Software
Engineering, Berlin, Germany (1996)

14. van Emden, E., and Moonen, L.: Java Quality Assurance by Detecting Code Smells. Pro-
ceedings of the 9th Working Conference on Reverse Engineering, IEEE Computer Society
Press (2002)

15. Fenton, N., and Pfleeger, S.L.: Software Metrics A Rigorous & Practical Approach. PWS
Publishing Company, Boston (1997) pp. 408

16. Fowler, M.: Refactoring Improving the Design of Existing Code. Addison-Wesley (2000)
17. Frakes, W., and Terry, C.: Reuse Level Metrics. Proceedings of the 3rd International Con-

ference on Software Reuse, Rio de Janeiro, Brazil (1994)
18. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: Design patterns: Elements of Reus-

able Object-Oriented Software. New York, Addison-Wesley (1995)
19. Johnson, P.M., Disney, A.M.: Investigating Data Quality Problems in the PSP. Proceed-

ings of the Sixth International Symposium on the Foundations of Software Engineering
(SIGSOFT 98) (1998)

20. Hollander, M., Wolfe, D.A.: Nonparametric statistical inference. New York: John Wiley &
Sons (1973) 27-33

21. Layman, L., Williams, L., Cunningham, L.: Exploring Extreme Programming in Context:
An Industrial Case Study. Agile Development Conference (2004) 32-41

 Does Refactoring Improve Reusability? 297

22. Li, W., Henry, S.: Maintenance Metrics for the Object Oriented Paradigm. Proceedings of
the First International Software Metrics Symposium, Baltimore, MD (1993) 52-60

23. McCabe, T.: Complexity Measure. IEEE Transactions on Software Engineering, 2(4): 308-
320 (1976)

24. Poulin, J.S.: Measuring Software Reusability. Proceedings of the Third Conference on
Software Reuse, Rio de Janeiro, Brazil (1994)

25. Ratzinger, J., Fischer, M., Gall, H.: Improving Evolvability through Refactoring. Proceed-
ings of the 2nd International Workshop on Mining Software Repositories (MSR’05), Saint
Louis, Missouri, USA (2005)

26. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Collecting, Integrating and Analyzing Soft-
ware Metrics and Personal Software Process Data. Proceedings of the EUROMICRO 2003
(2003)

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 298 – 311, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Using the Web as a Reuse Repository

Oliver Hummel and Colin Atkinson

University of Mannheim, Chair of Software Technology
68159 Mannheim, Germany

{hummel, atkinson}@informatik.uni-mannheim.de
http://swt.informatik.uni-mannheim.de

Abstract. Software reuse is widely recognized as an effective way of increasing
the quality of software systems whilst lowering the effort and time involved in
their development. Although most of the basic techniques for software retrieval
have been around for a while, third party reuse is still largely a “hit and miss”
affair and the promise of large case component marketplaces has so far failed to
materialize. One of the key obstacles to systematic reuse has traditionally been
the set up and maintenance of up-to-date software repositories. However, the
rise of the World Wide Web as a general information repository holds the po-
tential to solve this problem and give rise to a truly ubiquitous library of (open
source) software components. This paper surveys reuse repositories on the Web
and estimates the amount of software currently available in them. We also
briefly discuss how this software can be harvested by means of general purpose
web search engines and demonstrate the effectiveness of our implementation of
this approach by applying it to reuse examples presented in earlier literature.

1 Introduction

It has long been recognized that reuse is the key to making software development a
fully fledged engineering discipline [19] in which quality systems are built at low cost
in a dependable and predictable manner. In principle, almost all assets that are pro-
duced during a software development process such as domain knowledge, require-
ments, design and source code are potentially reusable. Traditionally, however, reuse
initiatives have focused on the reuse of software in binary or source-code form [1].
Even reuse in this sense is an umbrella term for many different concepts that can
range from ad-hoc copying of a few lines of code to the architecture-centric usage of
large parts of a software product line [12]. In this paper our focus is on software com-
ponents, but not in the sense of Szyperski [13] which emphasizes binary software
units, rather as source code units that can be used independently. This can range, in
the simplest case, from a class that contains a stateless method, to a variety of classes
that depend on some shared libraries. Unfortunately, these more complex forms of
components are difficult to retrieve since common programming language do not
make their required interfaces explicit.

There has been an ongoing discussion in the literature (see e.g. [3], [6]) over
whether a component repository is a necessary condition for a successful reuse pro-
gram or not. Failure mode analyses have established that to be reused a component

 Using the Web as a Reuse Repository 299

must at the very minimum be available and findable, and component repositories are
certainly one way of achieving this [24]. It has often been argued that typical reuse
collections are small and hence do not need library support, however, intuition sug-
gests that the bigger the component collection the higher the probability it contains a
matching artifact [30]. Given this observation it makes sense to study the ability of
repository organization and retrieval techniques to handle large component collec-
tions. To date Mili et. al.’s well known survey [17] gives the best overview of this
topic. After their study Mili et. al, like Seacord [6], were rather pessimistic that there
will be a solution to the so-called “repository problem” in the foreseeable future. They
argue that currently “(...) no solution offers the right combination of efficiency, accu-
racy, user-friendliness and generality to afford us a breakthrough in the practice of
software reuse”.

In addition to these academic studies of software reuse, there have been numerous
attempts to establish commercial component “marketplaces” in recent years. How-
ever, these have also had limited success. Two of the most well known, Component-
Source.com and Flashline.com, have had to merge recently. Moreover, the Universal
UDDI Business Registry (UBR), the high profile industry repository for web services,
rarely contained useful material (as we will show later) and was finally shut down in
January 20061. Likewise, most other initiatives have had very limited impact. These
stated approaches have essentially all been based on a standard “e-retail” model in
which components are offered in an informal catalogue-like style as if they were
mainstream consumer products. Trying to discover a component at ComponentSource
is therefore still much like browsing for a book on Amazon. It is a very informal,
unpredictable process with a highly uncertain outcome. Of course, searching tools
are provided, but these are very simple, typically text-based technologies which
essentially look for keywords in a component’s documentation.

1.1 The Opportunity

Naturally the rise of the Internet as a public library for almost everything has raised
the reuse community’s interest in utilizing it for their purposes (see e.g. [17], [6] &
[9]). In recent years there have been a growing number of research projects that have
made initial steps towards this goal. The earliest known approach that utilized the
Web together with a general purpose search engine was Agora [6]. Other researchers
and commercial websites have crawled publicly available CVS repositories to build
their own source code search engines (SPARS-J [25], Koders.com, Codase.com) or
for other research purposes (for instance [15]). Others have recently experimented
with the use of general search engines (such as Google and Yahoo) to search for com-
ponents. However, [25] did this only in a rudimentary way by augmenting queries
with the terms “java” and “source” while [29] questioned the feasibility of doing this.
Despite this pessimism, we have succeeded in developing a reuse approach called
Extreme Harvesting that we first introduced in [2] that can successfully retrieve com-
ponents from the Web. The basic idea is to use the whole Web itself as the underlying
repository, and to utilize standard search engines as the means of discovering appro-
priate software assets. Since the Web, by its very nature, is a very unstructured and

1 The official rationale is that the UBR has been successful as a proof of concept, though.

300 O. Hummel and C. Atkinson

unruly place that was not designed to store software source code this is not always
easy. However, we have shown it is indeed possible to automatically harvest all kinds
of valuable components by means of general search engines.

As the main purpose of this paper is to assess the size and quality of the Web as a
software repository we give only a brief overview of our Extreme Harvesting ap-
proach in the next section. Section 3 surveys specialized service and software search
engines on the web and evaluates their efficiency. In section 4 we compare these
results with the outcome of our Extreme Harvesting experiments and give our as-
sessment of the Web’s potential to serve as a ubiquitous software repository. Finally,
in section 5 we conclude and discuss potential future directions of the work.

2 Component Retrieval Basics

For the reader to understand why it makes sense to search the Web for usable soft-
ware components despite the problems described in [29] and above we briefly intro-
duce our Extreme Harvesting approach. Based on the lessons learned from Mili et
al.’s survey [17] and our own experiments we created this new hybrid semantics-
driven retrieval engine by integrating some of the techniques outlined there. As stated
in the survey, a retrieval process typically has to cover two criteria because a candi-
date component can fulfill the matching condition of one specific retrieval technique
but may not necessarily match a user’s relevance criterion. Consider the above men-
tioned keyword-based search technique, for instance. Such a search engine might
retrieve a number of components that contain the word Stack somewhere (maybe they
use a Stack), but only very few of them implement the appropriate data structure.
In other words, a single matching criterion is too weak to guarantee satisfactory
precision.

Applying more than one matching criterion essentially represents a filtering proc-
ess that iteratively shrinks the number of acceptable components in a repository
search until only acceptable components are left. In our current tool we apply three
filtering stages, namely linguistic, syntactic and semantic filtering. The linguistic
filtering is basically a keyword search as described above. After that a signature
matching step is applied [22]. Then, thirdly, we check the semantic compliance of
components by sampling their behavior [7]. As we have focused our current research
on Java we chose quasi standard JUnit [23] test cases to represent this information.
Unfortunately, behavior sampling of this from is only a limited substitute for com-
plete semantic checking, but it is the only practical way at present, because to find out
whether a code unit complies to a given formal description is equivalent to solving the
halting problem [28].

The cost of applying these filtering steps grows in the order they are introduced.
For this reason the combination of the three steps is the only practical way to retrieve
components with reasonable precision from very large repositories like the web. In
other words, it would never be computationally possible to apply a semantic relevance
check to millions of components. Figure 1 below provides a schematic summary of
the main steps involved in the practical implementation of our approach as originally
introduced in [2]:

 Using the Web as a Reuse Repository 301

a) define syntactic signature of desired component
b) define semantics of desired component in terms of test cases
c) search for candidate components using the APIs of standard web search

engines with a search term derived from (a)
d) find source units which have the exact signature defined in (a) or try to create

appropriate adapters
e) filter out components which are not valid (i.e. not compilable) source units, if

necessary find any other units upon which the matching component relies for
execution

f) establish which components are semantically acceptable (or closest to the
requirements) by applying the tests defined in (b)

c) Search the Web

a) Describe Syntax

d) Match Signatures

e) Compile

b) Describe Semantics

f) Test

Stack stack1 = new Stack();
stack1.push("Lassie");
stack1.push("Flipper");
assertTrue(((String)stack1.pop())

.equals("Flipper"));
assertTrue(((String)stack1.pop())

.equals("Lassie"));

Stack stack1 = new Stack();
stack1.push("Lassie");
stack1.push("Flipper");
assertTrue(((String)stack1.pop())

.equals("Flipper"));
assertTrue(((String)stack1.pop())

.equals("Lassie"));

Stack

+push(o:Object):void
+pop():Object

Stack

+push(o:Object):void
+pop():Object

Fig. 1. Schematic process overview

We currently have a Java-based prototype which implements the above approach and
is able to harvest Java components and web services from the web. Extending the tool
to handle other programming languages is a straightforward matter. Since our three
step filtering process has proven to be very effective in our experiments and our tool
has the capability to adapt search results into the form required in (a) automatically, a
developer can integrate any accepted search result right away in his/her development
project.

3 Internet-Based Repositories

This section briefly reviews the component and service search engines available on
the Internet or reported in the literature. Since one of the reasons for the recent

302 O. Hummel and C. Atkinson

excitement around web service technology is that its search technology UDDI [16] is
supposed to bring together service providers and service requestors we start our over-
view with web services that are available for third-party (re-)use. UDDI is advertised
as a flexible brokering technology that allows component developers to “publish”
their software as services, and potential component users to find suitable services
automatically through formalized syntactic descriptions of their requirements (in the
form of WSDL documents). Even semantic composition capabilities for web services
are becoming available (e.g. with the help of OWL [8]). Since so much industry in-
vestment has been pumped into the Universal UDDI Business Registry (UBR) one
would expect a sizeable index of services to now be available. However, as table 1
demonstrates, the UBR (and other service repositories) failed to reach a critical mass
of entries and a large proportion of the entries contained in the repository were out of
date. Many entries did not even point to valid WSDL descriptions and of those that
did, only a small proportion were actually working. The UBR’s shutdown in early
2006 was a logical consequence.

Table 1. Number of WSDL files within reach at various websites (July 2005)

Search Method API Claimed number of
links to WSDL files

No of actual links
to valid WSDL files

UDDI Business Registry2 yes 770 (790 [11]) 400 (430 [11])

BindingPoint.com no 3900 1270 (validated)

Webservicelist.com no 250 unknown

XMethods.com yes 440 unknown

Salcentral.com2, 3 yes ~800 all (validated)

We can only speculate about the reasons for the disappointing performance of such
repositories. However, the main problem with this concept in our opinion is not a
technical one, it is the overhead involved in the manual creation and maintenance of
the repository. The effort involved in entering a complete service profile into the UBR
should not be underestimated. In addition, there is the effort of updating or removing
the (possible many) entries when a server is moved or closed down. Interestingly, the
UBR followed exactly the three-phase reuse progression (empty, filled with garbage
or too general) that Poulin reported in [30] from his practical experience at IBM over
ten years ago (although we would argue that the UBR actually never reached the third
phase).

Since the Web in its current form is still relatively new there have been few at-
tempts to date to utilize it as a source of components for mainstream software engi-
neering. The most well known attempt is Agora search engine [6] mentioned above.
Agora was developed at the Software Engineering Institute (SEI) as a special purpose
search engine with its own index of Java applets and ActiveX components which has

2 As of March 2006 this website is no longer available.
3 Salcentral copied the entries of UDDI and XMethods, the values were estimated from active

UDDI and XMethods entries.

 Using the Web as a Reuse Repository 303

been filled using a general purpose search engine. However, this project was discon-
tinued probably due to the high effort involved in setting up the index. In addition to
this approach, focused on black-box components, the recent advent of open source
software has also made it possible to look – at least manually – for white-box compo-
nents – that is, publicly available source code on the Web [26].

Another idea, utilized by a number of papers in the 2004 and 2005 ICSE work-
shops on mining software repositories, is to crawl the CVS servers of Sourceforge.net
or similar sites (see e.g. [15]) and analyze the content in some way. However we are
not aware of an approach that explicitly aims to reuse this material. As Sourceforge
does not offer search capabilities for the code it stores, the approach of Koders.com, a
fairly new commercial site, makes a lot of sense. They download and index source
codes from publicly available CVS repositories and then support text based searches
on these assets through a Google style search interface. Codase.com has built a simi-
lar index that offers limited support for syntactic searches constrained to method
names or parameter types. Krugle.com is a similar site that is scheduled to come on
line early in 2006. The following table provides an overview of the sites known to us
at the time of writing. We did not consider software retailers like Component-
Source.com or Jars.com in this overview as they typically offer very large packages or
complete applications which are beyond the scope of our approach and do not offer
access to source code.

Table 2. Overview of specialized source code search engines (January 2006)

URL No. of Lan-
guages
supported

API Supported
Search
Methods

Indexed
Lines of
Code

No. of
Java
classes

Koders.com 30 RSS Linguistic 225,816,744 330,000

demo.spars.info [25] 1 no Linguistic &
Syntactic

n.a. 180,000

Kickjava.com 1 no Linguistic 20,041,731 105,000

Codase.com 3 no Linguistic &
Syntactic

250,000,000 95,000

Csourcesearch.net 2 no Linguistic &
Syntactic

283,119,081 n.a.

Sourcebank.com 8 no Linguistic n.a. > 500

Planetsourcecode.com 11 no Linguistic 11,276,847 230

In contrast to general web search engines the listed sites are specialized for source
code searches. Hence, they all offer the opportunity to limit searches to a specific
language, but only Koders.com fulfills another important requirement for being ac-
cessible with our tool, namely an API for programmatic access. Their API is based on
Amazon’s Opensearch format which in turn is based on RSS. As illustrated by the
table above, none of the listed sites provides a form of semantic evaluation for the

304 O. Hummel and C. Atkinson

searches and only a few support the constraining of queries to given syntactic ele-
ments (such as method names or parameter types). The estimates we provide for the
size of the repositories are the number of indexed lines of code (where this is speci-
fied on the site) and the number of Java classes available (by searching for the term
“class” in Java files).

4 The Web as a Component Repository

In section 2 we described how a suitable combination of well known techniques and
heuristics can effectively harvest components from the web when the desired kind of
component is present. However, as with any component repository, it cannot deliver
components if there are no suitable ones in the repository. As discussed in section 3,
this has been highlighted by web services, the most recent attempt to make third party
software components discoverable and accessible via the Internet. As shown in table 1
the Universal UDDI Business Repository has fallen far short of the original predica-
tions. Other specialized source code search engines are better, but still only deliver a
small part of the Web’s potential as we will demonstrate below.

The effectiveness of the retrieval mechanism is only one prerequisite for a practi-
cally useful reuse technology. The other is the availability of a repository with a rich
and extensive collection of components which covers a large proportion of the kinds
of components that users are likely to require [6]. In this section we discuss and
evaluate the extent to which the web is able to fulfill this need. As briefly mentioned
above, search engines are appropriate for integration in an automated approach like
ours if two prerequisites are satisfied. First, a search engine must have an API that
allows computational access to its index and second – and this is very important for
general search engines as Google and Yahoo – there must be a way to (pre-) filter
searches according to a given programming language. To date we have found these
features in three engines, namely the two market leaders for general web searches
Google and Yahoo where we are able to exploit an undocumented feature of their
“filetype” filter, and the specialized engine from Koders.

4.1 Repository Volume

To illustrate the magnitude of the accessible code resources on the web the following
table shows the numbers of Java files that could be retrieved using Google, Koders
and Yahoo search engines during our experiments in 2004 and 2005. Two sets of
values are shown for the Google entries – the first giving the number obtained using
the regular human HTML interface and the second (bracketed) giving the number
obtained using the Web-API for automated access. Unfortunately, the latter delivers
only a fifth of the results available using the former.

The italicized value in the last row stems from the query “filetype:java” class OR
–class. One should assume that a search with “filetype:java” -class only delivers Java
interfaces and no classes but actually this is not the case. Manual inspections revealed
a high percentage of class files. One explanation for this strange result may be that
Google does not completely index some files. The numbers in the table represent the
mean value of several samples per month whereas individual values can vary even

 Using the Web as a Reuse Repository 305

Table 3. Number of Java files indexed by search engines on the Web

Month Google (Web API) Koders Yahoo

08/2004 300,000 - -

01/2005 640,000 - -

06/2005 950,000 (220,000) 310,000 280,000

08/2005 970,000 (220,000)
1,510,000 (367,000)

330,000 2,200,000

11/2005 2,212,000 (190,000)
4,540,000 (410,000)

330,000 2,200,000

from one request to the next within just a few minutes (for Google and Yahoo). How-
ever, the growth trend illustrated by the numbers is unmistakable. In August 2005 a
similar request for various C-style languages (filetypes: c, cpp and cs) revealed a total
of about 1.6 million source files in Google’s index, 2.7 million from Yahoo and
500,000 from Koders.

The overlap between Google and Yahoo seems to be rather low - it is typically be-
low 20% (5 out of 24) for our isLeapYear example (see table 6) and for the first
250 results of each engine for our Matrix example from table 7, 47 out of 500 over-
lap. This observation tallies with other reports for general HTML searches [14]. Un-
fortunately, it is not possible to estimate a URL-based overlap between Koders and
Google/Yahoo because Koders stores the contents with proprietary URLs. With the
numbers presented above, we estimate that our system currently has access to about 3
million Java files. This is – to our knowledge – the most comprehensive source-code
collection reported in the literature so far. Inoue et. al. [25] has access to roughly
180,000 classes and Agora to around 10,000 (black-box) applets [6].

Similar to Agora, Yahoo allows a search to be limited to pages that contain Java
applets (feature:applet), delivering the impressive number of 95,000,000 results, or to
ActiveX components (feature:activex), resulting in an astonishing 750,000,000 pages.
Although our tool focuses on white-box components at present, it should be possible
to use mechanisms like Java’s reflection capability to utilize this large number of
black-box components as well. Initial experiments in this direction have already dem-
onstrated promising results: we were able to populate a database with more than 4500
JAR files containing almost 500,000 classes.

Google and Yahoo could also be helpful for the web service community since they
are also able to retrieve WSDL files. As the next table illustrates, they are actually
better at discovering WSDL files than the web service repositories from table 1.

Table 4. Number of WSDL files delivered from search engines

Search Engine API Claimed no. of
links to WSDL files

No. of actual links to
valid WSDL files

Google yes 9000 (1700) 794 out of first 1000

Yahoo yes 13400 (1900) 425 out of first 1000

306 O. Hummel and C. Atkinson

The values in brackets show the number of results returned through the APIs. This
indicates that the search results could be better were not it for the artificial limitation
imposed on automated queries. Both search engine APIs allow access to only the first
1000 results returned in response to a query. This is not usually a problem when
searching for a specific functional component since the number of retrieved candi-
dates rarely exceeds a few hundred. To conclude this subsection, we summarize the
results of our investigations in the following table. This reinforces our belief that the
Web has a high, but so far neglected potential as a software repository.

Table 5. Summary of investigated component types that are accessible via an API

Type Estimated number Applicable search engines

.java 3,000,000 Google, Yahoo, Koders

.c, .cpp, .cs 4,000,000 Google, Yahoo, Koders

.wsdl 10,000 Google, Yahoo, UDDI, Bind-
ingPoint, XMethods

.jar 600,000 Yahoo

Applets 95,000,000 Yahoo

ActiveX 750,000,000 Yahoo

4.2 Repository Scope

Beyond the shear number of components the functional scope of the components in a
repository is another interesting characteristic which is a widely unexplored issue in
the reuse literature. Most reuse approaches published to date provide some kind of
estimate of their tool’s power. Typically, however, the underlying repositories used in
such evaluations only contained up to a few thousand classes with very limited scope.
Furthermore, their comparability is very low since most evaluations were based on
proprietary repositories supporting some special features tailored to the employed
retrieval technique. Moreover, in order to get any results from these experiments
researchers had to give tasks to their subjects that were indeed solvable with the re-
positories contents. As one possible solution for this issue we propose the definition
of reference collections of the kind commonly used in information retrieval research
to evaluate “standard” retrieval systems. However, due to the high complexity of, and
large variations in, software solutions it is clear that this will not be easy.

Another issue arises with the assessment of uncontrolled repositories like the Web.
It is very likely – as confirmed by our experiments – that large numbers of compo-
nents with common functionality appear on the Web. This is of course ideal for reuse.
However, it compounds the problems involved in comparing retrieval techniques and
estimating the scope of a software repository. Our solution for this problem was to
take examples from comparable reuse experiments to (a) get an impression of the
quality of our combination of retrieval techniques and (b) to estimate the scope of the
Web as a repository. Another insight into the demand for component searches was

 Using the Web as a Reuse Repository 307

provided by the Koders’ search statistics4. The table below gives an impression of the
capability of our tool and shows that it compares favorably to other approaches. The
table presents various stateless components that offer typically used algorithms. The
first column presents the method names that we used for the search, the second col-
umn shows the signature that we entered into our system. Columns three, four and
five show how many results passed the filtering process and the last column shows
the source which provided the inspiration for the example. Due to space restrictions
we cannot show the test cases for the semantic checking here. It should be enough to
know that we used about three to five test cases per example as they are typically
applied for unit testing in non-reuse processes.

Table 6. Query results from June and July 2005

Names Signature

K
od

er
s

Y
ah

oo

G
oo

gl
e

Source

getRandomNumber int x int: int 3 6 2 [5], [25]

sort int[]: void 1 12 15 Koders

reverseArray int[]: void 0 10 6 -

copyFile String: void 2 1 0 Koders

isPrime int: Boolean 1 8 14 [18]

sqrt double: double 2 9 5 [7]

isLeapYear int: Boolean 1 29 24 [5]

replace String x String: String 14 10 22 Koders

gcd5 int x int: int 3 68 10 [10]

md5 String: String 3 1 0 Koders

lcs6 String x String: String 0 0 2 [10]

quicksort String[]: void 4 3 2 [25]

Due to the heuristics implemented in our prototype, results with slightly different
names were adapted to the original signature and also accepted, like getRando-
mInt instead of getRandomNumber and so on. Furthermore, the autoboxing capa-
bilities of Java 1.5 came handy for the BinaryTree example from the table below
which illustrates more complex and typically stateful components. Interestingly, we
were not able to retrieve a single functioning web service for any of the examples
from table 6 above, and we were only able to find the CreditCardValidator
from table 7 with more complex classes below. We describe the interfaces of these
examples in the form of UML class diagrams:

4 http://koders.com/info.aspx?page=LanguageReport
5 Greatest common divisor.
6 Longest common substring.

308 O. Hummel and C. Atkinson

Table 7. Exemplary stateful components

Component’s UML diagram

 K
od

er
s

re
su

lt
s

Y
ah

oo

re
su

lt
s

G
oo

gl
e

re
su

lt
s

So
ur

ce

BinaryTree

+BinaryTree(value:int, left:BinaryTree, right:BinaryTree)
+height():int

BinaryTree

+BinaryTree(value:int, left:BinaryTree, right:BinaryTree)
+height():int

BinaryTree

+BinaryTree(value:int, left:BinaryTree, right:BinaryTree)
+height():int

0 4 7 [17]

Stack

+push(o:Object):void
+pop():Object

6 13 33 [25] &
similar to
[22]

Matrix

+Matrix(rows:ints, cols:int)
+set(row:int, col:int, val:double):void
+get(row:int, col:int):double
+add(m:Matrix):Matrix
+sub(m:Matrix):Matrix
+mul(m:Matrix):Matrix

Matrix

+Matrix(rows:ints, cols:int)
+set(row:int, col:int, val:double):void
+get(row:int, col:int):double
+add(m:Matrix):Matrix
+sub(m:Matrix):Matrix
+mul(m:Matrix):Matrix

1 1 3 [21]

CreditCardValidator

+CreditCardValidator(type:int)
+isValid(no:String):boolean

CreditCardValidator

+CreditCardValidator(type:int)
+isValid(no:String):boolean

CreditCardValidator

+CreditCardValidator(type:int)
+isValid(no:String):boolean

1 1 1 [20]

Deck

+shuffle():void
+deal():Card

Deck

+shuffle():void
+deal():Card

Card

+toString():String

Card

+toString():String

- 20 17 [5]

4.3 Component Quality

The most pressing question still to be answered is of course the quality of components
downloaded from the Web. So far we found that most components that passed our
tests were of reasonable quality, and some minor problems (e.g. with the isLeapYear
example or the size of harvested Stack classes) could have been avoided with better
test cases. This directly leads to the realm of reliability measurement and the evalua-
tion of components to certain levels of confidence. Even when a component passes all
tests defined by a developer it is not certain that it will perform with 100% reliability
since unit tests are incomplete in most practical situations. As this is also the case for
non-reuse components, further acceptance tests would certainly follow in either case.

However, as harvesting typically delivers multiple results for a search request the
idea of back-to-back testing [27] (i.e., comparing the results of functionally identical
components for the same random input) is a good starting point to estimate the reli-
ability of retrieved components. This naturally leads to another area of enhancement
which relates to the issue of ranking components. At present the result of our selection
process is a list of components which have passed all the filtering steps and thus qual-
ify as “working” components. However, this set is not ordered in any way. The next
logical extension of the approach is to present the components in a ranked list similar
to that of Google and Spars-J [25]. There are many possible ways of doing this like

 Using the Web as a Reuse Repository 309

depending on non-functional attributes of a component such as its estimated reliability
or code metrics to mention just a few.

4.4 Extensibility

One way of estimating the size of the World Wide Web as a component repository is
to inject known components into and determine how easily they can be detected. One
way of doing this is to insert files into the CVS repository of a big open source site
like Sourceforge since these are almost immediately made available on the Web.
Another approach would be to simply store source files on a web server, link them via
a HTML file and submit everything to the crawlers of one of the big search engines.
We did exactly this in early 2006 with some Java projects. However, the results were
not encouraging. Google had not indexed any of them in our eight week observation
period and via Yahoo our index page was accessible for a few days but was then re-
moved again. A possible explanation might be that the big search engines focus on
human readable material and hence try to avoid including source code in their index.
Koders also appears not to have updated its index for many months. These observa-
tions make it clear that contributing to the ubiquitous repository World Wide Web in
a controlled fashion is not practical at present.

We have also investigated whether the common peer-to-peer (P2P) platform
Gnutella is useful for component distribution, as P2P systems are typically a place
where all kinds of files can be easily shared with almost no effort. However, the re-
sults are – at least currently – not encouraging. For instance, there are only about
2,500 Java source files available in the Gnutella network on average. And as P2P
systems simply search in the name and not in the content of files they offer only the
most simplistic search support and hence offer not much incentive for developers to
use P2P systems for this purpose. These investigations show that there is plenty of
room for a dedicated P2P or web search system that makes it easy contribute code,
perhaps in the same way that CVS plug-ins for common CASE tools function.

5 Conclusion and Future Work

There have been many notable attempts during the history of computer science to
make software reuse a more integral part of industrial software engineering, but to
date they have all foundered on the problem of creating and maintaining a sufficiently
rich and large repository of components. This includes the UDDI-based Universal
Business Registry which despite the relative newness of the technology was full of
unusable material before it has been closed down recently.

In contrast to this experience, the contribution of this paper is to show that (1) the
Web has become sufficiently large and stable to serve as a self-maintaining compo-
nent repository and (2) that it is possible to build an engine which can harvest compo-
nents from this repository in an efficient and dependable way. Since we are still in a
fundamental research stage there is a whole host of other issues to be addressed. The
security problem associated with executing unknown software from the Web is one
example, of course. Hence, we are working to extend the capabilities of our prototype
tool in this and several other directions. Support for some kind of ontology or

310 O. Hummel and C. Atkinson

thesaurus technology is one important idea. Another is the inclusion of proactive
recommendation technology in the spirit of CodeBroker [25]. Although our approach
originated from agile development approaches we also aim to provide tight integra-
tion into modern component development methodologies like KobrA [12]. Closely
related to this aspect is the problem that common programming languages do not
make components they rely on explicit- that is, their required interface is typically
hidden inside the source code. Although, we have made good progress in resolving
the required interfaces of components (i.e. the imports of Java files) there is still a
long way to go. Finally, there are lots of ethical and legal aspects related to the har-
vesting of software from the Web that could also influence the usability of a compo-
nent. However, as with most other Internet technologies including search engines and
peer-to-peer file sharing systems, the technology usually comes first and the legal
issues are sorted out afterwards. Therefore, we hope the work described in this paper
will provide a new impulse to software reuse and will help bring closer the day when
automated access to a rich library of software components is the rule rather than the
exception.

References

1. McIlroy, D.: Mass-Produced Software Components. Software Engineering: Report of a
Conference sponsored by the NATO Science Committee, Garmisch (1969)

2. Hummel, O., Atkinson, C.: Extreme Harvesting: Test Driven Discovery and Reuse of Soft-
ware Components, Proceedings of the International Conference on Information Reuse and
Integration (IEEE-IRI), Las Vegas (2004)

3. Frakes, W. B., Fox, C.J.: Sixteen Questions about Software Reuse. Communications of the
ACM, Vol 38 Issue 6 (1995)

4. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley (1999)
5. Ye, Y., Fischer, G., Reuse-Conducive Environments. Journal of Automated Software En-

gineering, Vol. 12, Iss. 2, Kluwer (2005)
6. Seacord, R.: Software Engineering Component Repositories, Proceedings of the Interna-

tional Conference of Software Engineering, Los Angeles (1999)
7. Podgurski, A., Pierce, L.: Retrieving Reusable Software by Sampling Behavior. ACM

Transactions on Software Engineering and Methodology, Vol. 2, Iss. 3 (1993)
8. Sirin, E., Hendler, J., Parsia, B.: Semi-automatic composition of web services using se-

mantic descriptions. In Web Services: Modeling, Architecture and Infrastructure workshop
in ICEIS 2003, Angers (2003)

9. Frakes, W.B., Kang, K.: Software Reuse Research: Status and Future. IEEE Transactions
on Software Eng., Vol. 31, No. 7 (2005)

10. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd Edition.
MIT Press (2001)

11. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity Search for Web Ser-
vices. Proceedings of the 30th VLDB Conference, Toronto (2004)

12. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D.,
Paech, B., Wüst, J., Zettel, J.: Component-based Product Line Engineering with UML.
Addison Wesley (2002)

13. Szyperski, C.: Component Software, Addison-Wesley, 2nd Edition, 2002
14. Dogpile.com: Different Engines, Different Results, Technical Report, (2005): http:// com-

paresearchengines. dogpile.com/ OverlapAnalysis.pdf (accessed 09/08/05).

 Using the Web as a Reuse Repository 311

15. Amin, R., Ó Cinnéide, M. and Veale, T.: LASER: A Lexical Approach to Analogy in Soft-
ware Reuse, Proceedings of the International Workshop on Mining Software Repositories,
Edinburgh (2004)

16. Belwood, T., Clément, L., Ehnebuske, D., Hately, A., Hondo, M., Husband, Y.,
Januszewski, K., Lee, S., McKee, B., Munter, J., von Riegen, C.: UDDI Version 3.0. Oa-
sis Committee Specification (2002)

17. Mili, A., Mili, R., Mittermeir, R: A Survey of Software Reuse Libraries. Annals of Soft-
ware Engineering 5 (1998)

18. Hall, R.J.: Generalized behavior-based retrieval. Proceedings of the International Confer-
ence on Software Engineering, Baltimore (1993)

19. Mili, A., Yacoub, S., Addy, E., Mili, H., Toward an engineering discipline of software re-
use. IEEE Software, Vol. 16, No. 5 (1999)

20. Vitharana, P., Zahedi, F., Jain, F.: Knowledge-Based Repository Scheme for Storing and
Retrieving Business Components. IEEE Transactions on Software Engineering, Vol. 29,
No. 7 (2003)

21. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and Applica-
tions. Addison Wesley (2000)

22. Zaremski, A.M. Wing, J.M.: Signature Matching: A Tool for Using Software Libraries.
ACM Transact. on Software Engineering and Methodology, Vol. 4, No. 2 (1995)

23. Beck, K., Gamma, E., JUnit: A Cook’s Tour. Java Report (August 1999)
24. Frakes, W.B., Fox, C.J.: Quality Improvement Using A Software Reuse Failure Modes

Model. IEEE Transactions on Software Eng., Vol. 22, No. 4 (1996)
25. Inoue, K., Yokomori, R., Fujiwara, H., Yamamoto, T., Matsushita, M., Kusumoto, S.:

Ranking Significance of Software Components Based on Use Relations. IEEE Transac-
tions on Software Eng., Vol. 31, No. 3 (2005)

26. Brown, A.W., Booch, G.: Reusing Open-Source Software and Practices: The Impact of
Open-Source Software on Commercial Vendors. In C. Gacek (Ed.): LNCS 2319, Springer
(2002)

27. Vouk, M.A., Back-to-Back Testing. Information & Software Techn., Vol. 32, No. 1 (1990)
28. Edmonds, B., Bryson, J.: The Insufficiency of Formal Design Methods - the necessity of

an experimental approach for the understanding and control of complex MAS, Proc. of the
3rd Intern. Joint Conf. on Autonomous Agents & Multi Agent Systems, New York (2004)

29. Yao, H., Etzkorn, L.: "Towards a Semantic-based Approach for Software Reusable Com-
ponent Classification and Retrieval", Proceedings of the 42nd annual Southeast Regional
Conference, Huntsville (2004)

30. Poulin, J.: "Populating Software Repositories: Incentives and Domain-Specific Software",
Journal of Systems and Software, Vol. 30 (1995)

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 312 – 325, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A UML2 Profile for Reusable and Verifiable Software
Components for Real-Time Applications

V. Cechticky1, M. Egli1, A. Pasetti1, O. Rohlik1 , and T. Vardanega2

1 Institut für Automatik, ETH-Zentrum, Physikstr. 3,
CH-8092 Zürich, Switzerland

{eglimi, pasetti, rohlik}@control.ee.ethz.ch
2 Dept. of Pure and Applied Mathematics, University of Padua

Via Belzoni 7, 35131 Padova, Italy
tullio.vardanega@math.unipd.it

Abstract. Software frameworks offer sets of reusable and adaptable compo-
nents embedded within an architecture optimized for a given target domain.
This paper introduces an approach to the design of software frameworks for
real-time applications. Real-Time applications are characterized by functional
and non-functional (e.g. timing) requirements. The proposed approach separates
the treatment of these two aspects. For functional issues, it defines an extensible
state machine concept to define components that encapsulate functional
behaviour and offer adaptation mechanisms to extend this behaviour which
warrant preservation of the functional properties that characterize the
framework. For timing issues, it defines software structures that are provably
endowed with specific timing properties and which encapsulate functional
activity in a way that warrants their enforcement. A UML2 profile is defined
that formally captures both aspects and allows the proposed strategy to be
deployed at design level.

1 Introduction

A software product family is a set of applications that can be built from a pool of
shared software assets. Software frameworks [1] offer a way to organize the shared
assets behind a product family. They define an architecture optimized for applications
in a certain domain and offer predefined components that support its instantiation.
During the instantiation process the framework assets are tailored to suit the specific
requirements of the target application. To this end, a software framework defines a
number of adaptation points where application-specific behaviour can be inserted.
Most contemporary software frameworks are object-oriented in the sense that their
reusable assets consist of encapsulated software components and their adaptation
mechanisms are based on class extension and interface implementation.

Although software frameworks have proven very successful at fostering a reuse-
driven approach in business and desktop applications, they have so far failed to
penetrate the realm of hard real-time (HRT) applications. HRT applications are
characterized by non-functional (timing) requirements that impose severe constraints
on the timing behaviour of the application and that often are mission-critical.

 A UML2 Profile for Reusable and Verifiable Software Components 313

Presently the prevalent paradigm in the real-time world is bases on model driven
architectures. With this approach, the requirements of the target applications are
expressed in a formalism that allows an implementation to be automatically generated
from the specification.

Both the reuse-driven and model-driven approaches have strengths and weak-
nesses. The model-driven approach holds the promise of completely automating the
software development process. Additionally, the formal definition of the requirements
facilitates formal verification of correctness, for example using model-checking
techniques [2]. On the downside, the model-driven approach is intrinsically limited by
the expressive power of the modeling language of choice. Model-driven tools also are
very costly to develop and their development is only justified for applications that
have sizable markets. The reuse approach can be more flexible both because reusable
building blocks can, in principle, be provided to cover as wide a range of
functionalities as desired, and because it can be applied in an incremental way with
repositories of reusable building blocks built up over time. The main drawback with
this approach is that the adaptation process is difficult to formalize and developers of
critical applications are reluctant to adopt components that they did not develop (the
well-known “not-invented-here syndrome”) and over whose characteristics they may
have little visibility. Furthermore, adaptation techniques are in effect geared to
functional requirements only and adaptation to real-time requirements remains poorly
understood.

In this paper, we propose a design approach for HRT applications that combines
reuse- and model-driven flavours. The proposed approach is reuse-driven in the sense
that it sees an application as an instance of an object-oriented software framework. It
is model-driven in the sense that a modeling language is defined to describe both the
framework components (in terms of their interfaces as well as their behaviour) and
their adaptation mechanism. The component implementation is automatically
generated from their models. Our approach also allows for the definition of formally
verifiable properties upon the framework. Since our focus is on real-time
applications, we cover both functional and timing properties. Functional properties
formalize logical relationships on the variables that define the state of an application.
This logical relationship may also be sequential in that it may relate past and present
values of the state variables. Timing properties define constraints on the arrival time
of external events and on the completion times of application activities.

We regard an object-oriented software framework as a set of interacting compo-
nents that can be adapted through class extension1. The components encap-sulate the
commonalities of the applications within the framework domain. Their adaptation
allows application-specific behaviour to be added to the default behaviour defined at
framework level. Figure 1 shows our proposed development process for a framework.
We break the process up in three main phases. The domain analysis phase defines the
target domain of the framework and the functionalities it must provide [3]. This phase
is not discussed further in this paper. In the domain design phase, the framework
components are designed. The output of this phase is a model of the framework. Two

1

The second adaptation mechanism of object-oriented frameworks – adaptation through
interface implementation – is seen as a special case of the first as an interface can be
represented by an “empty” class (a class with only abstract methods)

314 V. Cechticky et al.

views of this model are constructed. The functional view defines the framework from
a functional point of view. It consists of class diagrams that define the functional
architecture of the framework (the component interfaces and their mutual relations)
and state charts that define the internal behaviour of each component. The functional
model also identifies the extension points of the components. The timing view defines
the HRT characteristics of the framework by identifying and characterizing the
threads and the synchronization points and data structures that may be used by
applications instantiated from the framework. Finally, in the domain implementation
phase the components are implemented. For the most part this latter stage is attained
by automatic code generation from the component models.

Fig. 1. Framework Development Process

In this paper we discuss the functional and timing views. Notably, these two views
do not form two separate models. Rather, they provide two different representations
of the one and the same underlying model. The value of our approach is that it allows
these two views to be defined independently of each other, so that conceptually they
can be treated in isolation. The concerns arising from each view are merged during
the code generation process after verifying the feasibility of the timing view and the
correctness of the functional view of the system. The framework model is then
processed and the code for the framework components is automatically generated for
both the functional and timing dimensions.

The association of verifiable properties to models is typical of model-driven
architectures. In a framework context two levels of properties must be distinguished
(cf. figure 2). Framework-level properties formalize the commonality of behaviour of
applications within the framework domain. These properties must be satisfied by all
applications instantiated from the framework. Additionally, each individual appli-
cation may be endowed with application-specific properties. The adaptation process
through which the framework components are tailored to the needs of a target
application is constrained to guarantee that the application-level components still
satisfy the framework-level properties. The framework instantiation process can thus
result in new properties being added but will never result in the violation of the
framework-level properties.

In keeping with the standard approach in the model-driven community, the
framework modeling language is expressed as a UML2 profile that we name the FW
(framework) Profile. The bonus of this choice is that UML2 environments are now

 A UML2 Profile for Reusable and Verifiable Software Components 315

Fig. 2. Framework- and Application-Level Properties

available that can be customized to enforce a user-defined profile during the design
process. Most application developers are familiar with UML-based design. The
transition to our approach can therefore take place naturally and at minimal costs.

The remainder of this paper is organized as follows. Sections 2 and 3 describe the
design approach for, respectively, the functional and timing aspects of a framework.
Section 4 presents the code generation approach. Section 5 describes a case study,
discusses related work, and concludes the paper.

The full definition of our framework profile and associated development process
can be found in [4]. A plug-in for the Eclipse UML2 platform to enforce the profile
during the design process is available from [5].

2 Functional Design

The functional design of the framework consists in the definition of its functional
view. The functional view describes the framework architecture, the functional
behaviour of the framework components, and the component adaptation mechanisms.
The framework architecture is described in terms of the external interfaces of the
framework components and their mutual interconnections. The framework
architecture is represented through UML2 class diagrams. The adaptation mechanism
is also defined on the class diagrams by identifying the class methods that are either
abstract or virtual. The functional behaviour of the components is represented through
UML2 state charts. Advanced support of state charts is the main reason of choice of
UML2 over older versions of UML.

The FW Profile defines the rules that constrain the way UML2 class diagrams and
state charts are built. The description of the FW Profile is best given in terms of three
elements: (i) the restriction of the UML2 state machine model; (ii) the component
extension mechanism; (iii) the action language to define the actions associated to the
state machines.

316 V. Cechticky et al.

2.1 UML2 State Machine Restrictions

The rationale for restricting the UML2 state machine model stems from our intent to
use state machines solely to describe the functional part of the behaviour of a class.
Behaviour that is time-related (e.g. waiting for an event) or that implies interaction
across thread boundaries (e.g. engaging a synchronization with a thread of control in
another class) is modelled in the timing view using other mechanisms discussed in
section 3. Accordingly, the FW Profiles stipulates that state transitions can only be
triggered by calls on the operations defined by the class associated to the state
machine. Other types of transition mechanisms (through signals or time triggers) are
forbidden. By the same token, no events are allowed by the FW Profile.

In practice, the state machines are only used to model behaviour inside threads.
Removing the time dimension from the state machine models is important because it
removes all the semantic ambiguities that plague the UML2 state machine model and
that make other attempts to use state machines to model behaviour unwieldy [15, 16].

The second driver for the restrictions on the UML2 state machine model is
simplicity and elimination of unnecessary features. This helps us streamline the model
validation and the code generation processes. UML2 allows for three kinds of states:
simple states, composite states, and submachine states. Only simple and composite
states are allowed by the FW Profile. UML2 also defines several kinds of pseudo-
states but the FW Profile only retains the initial pseudo-state and the choice pseudo-
states. Finally, UML2 allows entry, do and exit actions to be associated to states. The
entry and exit actions are retained but the do action is not necessary since the FW
Profile state machines are purely reactive: they only do something when they are
triggered by a call to a trigger operation defined on the class to which they are
associated.

2.2 Component Extension Mechanism

At class level, component extension is modelled through class extension. The main
constraint on the extension mechanism is that it must allow new properties to be
defined on the extended component while preserving the properties defined on the
base component (see figure 2).

Figure 3 illustrates the proposed mechanism. Class Base represents a component
provided by the framework. Class Derived represents the adapted component cons-
tructed during the framework instantiation process. The framework-level properties
capture aspects of the Base state machine topology and of its state transition logic.
The FW Profile ensures that these properties are preserved by constraining the
extension to define the internal behaviour of one or more of the states of the base state
machine without altering its topology and transition logic. This is illustrated in the
figure where the derived state machine differs from the base state machine only in
including an embedded state machine that adds to the base states. The derived state
machine defines the internal behaviour of a state that was initially defined as being a
simple state.

The FW Profile adopts the extension process of figure 3 and forbids all other kinds
of state machine extensions that are allowed by UML2 (redefinition of transition,
definition of new transitions between existing states, definition of new states, etc).

 A UML2 Profile for Reusable and Verifiable Software Components 317

Fig. 3. Framework Component Extension Mechanism

In order to freeze the transition logic of a state machine, the FW Profile stipulates
that the trigger operations that control the state transitions must be defined as final
(i.e. they cannot be altered during the class extension process).

In order to ensure the preservation of properties defined on the base state machine,
the two state machines – the base state machine and the state machine embedded in
one of its states during the extension process – must be decoupled: trigger operations
defined on the derived class must act on one and only one of the two state machines,
and the embedded state machine must not be allowed to trigger transitions in the base
state machine.

The extension mechanism enforced by the FW Profile, though very simple,
corresponds to a realistic situation that often arises in framework design. This is the
case described by the well-known template design pattern where a class defines some
skeleton behaviour that offers hooks where application-specific behaviour can be
added by providing implementation for abstract methods. The behaviour encapsulated
in the skeleton, however, is intended to be invariant. In terms of the FW state machine
model, the invariant skeleton behaviour is encapsulated by the base state machine
whereas the variable hook behaviour is encapsulated by the nested state machines
added by the derived class.

318 V. Cechticky et al.

2.3 Action Language

The FW Profile stipulates that state machines are used to model the behaviour of a
class. At its most basic level, the link between a class and its associated state machine
is defined by the trigger operations (the class operations that trigger transitions in the
state machine). In order to allow for a more complete link between a state machine
and its associated class, the profile also defines an action language. The FW action
language is introduced to define: transition guards, transition effects, and state entry
and exit actions. It allows manipulation of class methods, class attributes of integer or
boolean type, and references to associated class instances. It thus allows a guard to be
expressed as a Boolean expression combining the above elements and transition
effects.

3 Timing Design

A software framework is not an executable application and hence it cannot in general
be subject to timing requirements. By arguing that a framework supports the
instantiation of HRT applications, we maintain that applications instantiated from it
are “aware” of the timing requirements imposed upon them and that their ultimate
feasibility can be statically analyzed against those requirements. The latter property is
of course crucial to the mission critical domain of our interest. Our goal is thus to
offer a design approach that guarantees that all applications instantiated from a certain
framework are statically analyzable for their timing properties.

The approach we take to this effect is centered on a reuse-geared adaptation of the
HRT-UML design method [7,8,9]. A distinct prerogative of HRT-UML is that it
adopts a concurrent computational model based on the Ravenscar Profile [10].

TheRavenscar Profile amounts to a set of restrictions placed on the concurrent
behaviour of a system. Notably, such restrictions are genuinely orthogonal to the FW
Profile presented in this paper since they do not concern the functionality that can be
expressed by the sequential part of target programming languages, but only the
concurrent behaviour of the application. All concurrent applications designed in
compliance with the restrictions of the Ravenscar Profile are statically analyzable for
their timing behaviour at run time by construction.If the Ada programming language
[6] is used, Ravenscar compliance can be proven a posteriori on the source code
submitted to the compiler. This assurance is an important asset for model-based code
generators, since code accepted by a Ravenscar-aware compiler is guaranteed to
behave at run time exactly as assumed by static analysis. Yet HRT-UML adds
considerable value to this assurance by elevating the Ravenscar restrictions to the
design level, so that the model space itself warrants structural compliance with them
by construction, that is a priori.

HRT-UML does so by placing rigorous restrictions (which all emanate from the
Ravenscar Profile) on the ontology and the taxonomy of the allowable elements of a
model. Ontological restrictions specify the semantic nature of model elements (hence
what they are for and how they can be used). Taxonomical restrictions define the
allowable relations that can be placed among model elements (hence how they can

 A UML2 Profile for Reusable and Verifiable Software Components 319

interconnect to one another). It is out of the scope of this paper to provide an
exhaustive presentation of HRT-UML. In the following we will simply illustrate the
basic principles of HRT-UML design that are relevant for illustration of the FW
Profile presented in this paper. For further details on HRT-UML the reader is referred
to the relevant literature [7,8,9,10].

3.1 Brief Ontology of HRT-UML Model Elements

Each element of an HRT-UML model is a cohesive aggregate of:

• one Provided Interface (PI), which publishes: (i) the signature of the
services (operations) that the element is capable of executing on request from
the outside environment; (ii) the constraints placed on invocation of its
operations (the invocation protocol); and (iii) the time bound (WCET)
stipulated on the execution of the required operation

• one Object Control Structure (OBCS), which is the agent responsible for
execution of the invocation protocol attached to the invocation of PI
operations

• one Thread that associates an autonomous run-time behaviour to the
element; such Thread is associated to a thread of control whose run-time
behaviour amounts to a non-terminating iteration revolving around a single
activation event arising from either a hardware interrupt (a clock or some
other device with a stipulated behaviour) or software

• one Operation Control Structure (OPCS) per operation published in the
PI, which provides the functional specification of the operation; as a direct
consequence of the Ravenscar restrictions, such functional specifications
must involve no internal concurrent action and no voluntary suspension

• one Required Interface (RI), which publishes to the outside environment:
(i) the signature of the operations that the element needs to use for carrying
out its own duties; (ii) the execution protocol that the element is willing to
accept for their invocation; and (iii) the execution time bound (WCET) that
warrant the preservation of the corresponding bounds on the PI.

Not all model elements need to possess all of the above internals. Specific ontolo-
gical rules determine the internal composition of each model element and the nature
of each internal constituent. Intrinsic to the hierarchical nature of HRT-UML design,
the primary ontological distinction is to be made between non-terminal and terminal
elements.

Non-terminal elements are “capsules” that hide their inner detail to the outside and
only present PI and RI (both of which can be void). Terminal elements are fully
resolved and allow/require no further decomposition. A non-terminal entity is created
by either top-down decomposition of a parent element into a set of child elements or
by bottom-up aggregation of independent sibling elements into a containing,
hierarchically superior, element. Hierarchical decomposition requires that the PI of
the parent element be delegated to matching PI of child elements. Hierarchical
aggregation permits to promote selected items of the PI of the aggregated elements to
the PI of the aggregating element and hide all others. Decomposition and aggregation

320 V. Cechticky et al.

must preserve respectively respect the ontology of model elements. In other words,
specific semantic rules determine the legal decompositions and the allowable
aggregations.

A further ontological rule on the composition of model entities stipulates that only
“active” terminal elements include a Thread. In fact, terminal elements that include a
Thread are denoted Cyclic or Sporadic. The former implies that the thread of control
associated at run time to the Thread entity of the Cyclic element takes its activation
event from a fixed-rate clock event. The desired rate can be changed at run time by
the application logic (as it would occur during a “mode change” situation) as long as
the PI of the corresponding Cyclic element publishes an operation to that effect. The
latter implies that the source of the activation event be other than time, however
requiring a guaranteed minimum separation between two subsequent arrivals of it.
This property is assumed at model level and warranted by the model transformation
rules that inform automated code generationA few words are in order on the ontology
of the internal constituents of HRT-UML model elements. The PI of a terminal
element is delegated to the PI of the element's OBCS, which may hold further
operations to match any of those appearing in the RI of the element's Thread, if any.
While having an empty PI, the Thread's RI includes the operations to fetch service
requests from the OBCS as well as the invocation of those services in the PI of the
corresponding OPCS. The element's OPCS, finally, has both PI and RI, the latter
because the execution of a service charged to the element may need to use the
services provided by other visible elements of the system. Figure 5 illustrates these
notions by depicting the ontology of a Cyclic element.

Fig. 4. The ontology of a Cyclic element in HRT-UML

3.2 Brief Taxonomy of HRT-UML Model Elements

The HRT-UML invocation protocols address two dimensions of critical relevance to
concurrent computing: (i) the guarantee of mutual exclusion on access to element
internals on execution of a given PI operation; and (ii) the suspension of the call until
the element internal state permits to execute it. The former caters for controlled access
to shared resources. The latter corresponds to placing a state-dependent conditions
akin to Dijkstra guards on the servicing of PI operation [12] HRT-UML draws from
the Ravenscar Profile the restrictions on the use of these invocation constraints.

 A UML2 Profile for Reusable and Verifiable Software Components 321

Firstly, it assumes that the locking policy in force in the execution environment be
based on Immediate Priority Ceiling Inheritance [11,12]. Secondly, it prescribes that
no more than one state-dependent invocation constraint should ever appear in the PI
of a terminal element so as to avoid the non-determinism that would incur from
multiple guard conditions becoming open simultaneously on one and the same PI.
Thirdly, it requires that no more than one call should ever queue at any one time
awaiting access to a state-constrained operation. The intent of this very severe
restriction is to constructively avoid the non-determinism that would arise from call
queuing. HRT-UML takes a very straightforward approach to enforcing this particular
restriction: it stipulates that state-constrained operations should only be invoked by
the Thread of Sporadic elements. In essence, PI invocation protocol of a Sporadic
element would specify how a given sequence of PI invocations would produce the
activation event of the element's Thread.

3.3 Integration with the FW Profile

HRT-UML defines the concurrent architecture of the framework. That architecture
may include components defined to the level of terminal elements, as either fully
developed object instances or plain classes. Other components may be left to the
stage of non-terminal elements, hence simply described by the corresponding PI and
RI (either of which may be empty).

The FW Profile defines the functional components of the framework architecture.
As discussed above, HRT-UML stipulates that such functional specifications pertain
to the PI, along with the applicable invocation protocol, to the RI, and to the OPCS
components of model elements.

In practice, the FW Profile imports the HRT-UML constraints on those ontological
components and guarantees that they are respected throughout design and instant-
iation. On these conditions, verification on the model can safely be performed for the
timing and the functional aspects in isolation, while code generation can also be
undertaken separately for the structural (concurrent) and the functional part.

4 Code Generation

The core of the approach proposed in this paper is a UML2 profile that allows func-
tional and timing behaviour of extensible components to be expressed in a manner
that permits the inclusion of components in HRT applications. Automatic generation
of the component code from its profile-compliant models is a natural extension to this
objective.

We do not deem it appropriate to define a single code generator for our profile.
Different domains have different coding rules and must interface to different middle-
ware or operating systems. The code generator must therefore be framework-specific.
The code generating approach can, however, be generic.

The approach we propose propagates the split between functional and non-
functional issues down to code level. We have found it convenient to have two code
generators (cf. Figure 5). The first one processes the timing view of the framework
model and generates a set of structural containers that enforce the timing constraints.

322 V. Cechticky et al.

In practice, these containers implement HRT-UML entities (sporadic, cyclical or
protected elements) with no functional behaviour attached to them. The second code
generator processes the functional view of the framework model and generates the
classes that implement the state machine logic, which encapsulates the functional
behaviour of the framework components. Each state in a state machine is mapped to
an instance of a generic State class. There is an aggregation relationship between a
class and the states of the associated state machine. Any state can embed further state
machines and thus embedded states (cf. figure 6). Triggers are mapped to parameter-
less operations that operate on a state by calling operations unmarkAsCurrent()
and markAsCurrent() on State objects. Guards, transition actions and state
entry and exit actions are expressed in the model using the action language associated
to the FW Profile. The action language syntax is simple and compatible with most
mainstream object-oriented languages.

The two code generators are integrated in the sense that the functional code is
designed to be embedded within the structural containers.

One can imagine that the non-functional code generator generates a set of non-
functional containers, whereas the functional code generator fills the containers with
the functional code.

Fig. 5. Code Generation Approach

The Eclipse Java Emitter Templates (JET) is the basic technology for our code
generator. JET is an open source tool for code generation. It is a generic template
engine that permits to generate any type of source code. A model-to-code generator
for Java has been implemented and the development of a generator for Ada 2005 [6]
is now under way, which builds on the work described in [13,14]. Both generators are
distributed as plug-ins for Eclipse and for IBM RSM [5].

 A UML2 Profile for Reusable and Verifiable Software Components 323

Fig. 6. Hierarchical State Machine Implementation

5 Case Study and Conclusions

We are using our approach to construct a software framework for satellite on-board
applications. These applications form a good case study since they are subject to HRT
constraints and are mission-critical. Our framework covers the handling of tele-
commands, namely the commands that are sent to a satellite by the ground station.

Telecommands are characterized by timing requirements that define the minimum
inter-arrival time of consecutive telecommands and the maximum execution time of
each telecommand. At a functional level, telecommands are characterized by some
requirements that apply to all satellite applications, and by others that are specific to
each satellite application. Examples of the former are the requirements that
telecommands must report the outcome of their execution to the ground station; that
they must perform an acceptance check that may lead to their being rejected before
their execution starts; or that their execution can be aborted by the ground station; etc.

In accordance with the process proposed in this paper, we designed the framework
in two steps. In one step, we defined the timing view to implement the timing
requirements. This was done by defining a set of HRT-UML sporadic structural
containers to hold groups of telecommands with the same timing constraints. This
architecture ensures that timing requirements are satisfied, independently of the
functional content of the telecommands. In the other step, we defined the functional
view of the framework by defining a set of reusable components. Their behaviour was
described by state machines. The state machine logic ensures that the application-
invariant functional requirements of the telecommands are satisfied. Since the design
complies with the FW Profile, the application developer can extend these components
to implement the application-specific behaviour in the knowledge that properties such
as reporting of execution outcome, or implementation of an acceptance check will be
preserved.

The case study demonstrated the four decisive advantages of our approach over
rival approaches to framework-based software reuse. Firstly, the functional and non-
functional aspects of the framework are defined separately from each other and are
only merged when the models are translated into code. This simplifies the design
process. In fact, functional and non-functional design can be entrusted to two different
teams (as was in fact done in our case study). Unlike other authors who have

324 V. Cechticky et al.

attempted to use state charts to model both the functional and non-functional
behaviour of real-time applications [15,16], we use two different modelling vehicles
for functional and non-functional issues and thus avoid the semantic uncertainties and
complexities of the UML2 state machine concept.

Secondly, the encapsulation of our approach in a UML2 profile means that
compliance with the approach can be enforced at design time using standard software
design tools. It also means that translation to code can be easily automated since there
are standard ways of building code generators for UML2-based models.

Thirdly, compliance with our FW Profile ensures that functional and timing
properties defined at framework level are preserved when the framework components
are reused to instantiate a particular application. This is an essential pre-requisite for
software reuse in mission-critical applications and we are not aware of other
methodologies that provide the same guarantee.Finally, the formulation of functional
properties on profile-compliant UML2 models opens the way to their formal
verification at model level. This is an avenue that we are currently exploring in a
follow-on project. The final objective is to arrive at a reuse methodology where
reusable components are provably endowed with functional properties whose
preservation be provably guaranteed throughout the adaptation process.

Acknowledgments

The definition of HRT-UML design method is the result of the collective effort of
several people. The authors of this paper gratefully acknowledge the considerable
contributions by Daniela Cancila and Enrico Mezzetti from the University of Padua
(Italy), and Silvia Mazzini, Stefano Puri and Maria Rosa Barone from Intecs (Italy).

References

1. Pasetti, A.: Software Frameworks and Embedded Control Systems, LNCS Vol. 2231,
Springer-Verlag, 2002

2. Wang F.: Formal verification of timed systems: A survey and perspective. Proceedings of
the IEEE, 92(8), pages 1283-1305. August 2004.

3. Cechticky, V., Pasetti, A., Rohlik, O., Schaufelberger, W.: XML-Based Feature
Modelling, in Bosch, J., Krueger, C. (eds), Software Reuse: Methods, Techniques, and
Tools (ICSR), LNCS Vol. 3107, Springer-Verlag, 2004.

4. Cechticky, V., Pasetti, A., Rohlik, O., Vardanega, T: Automated proof-based System and
Software Engineering for Real-Time Applications: Framework Design Report. Technical
Report, 2005. Available at ASSERT project website: http://www.assert-online.org/

5. Cechticky, V., Pasetti, A., Rohlik, O.: The Model-to-Code Transformation Project website
http://people.ee.ethz.ch/~ceg/assert/model2code/

6. ISO SC22/WG9: Ada Reference Manual. Language and Standard Libraries. Consolidated
Standard ISO/IEC 8652:1995(E) with Technical Corrigendum 1 and Amendment 1 (Draft
16). (2006) Available at http://www.adaic.com/standards/rm-amend/html/RM-TTL.html.

7. Mazzini S., D'Alessandro M., Di Natale M., Lipari G., Vardanega T.: Issues in Mapping
HRT-HOOD to UML. In: Proc. 15th Euromicro Conference on Real-Time Systems, IEEE,
221-228, July 2003 (ISBN: 0-7695-1936-9).

 A UML2 Profile for Reusable and Verifiable Software Components 325

8. Mazzini S., D'Alessandro M., Di Natale M., Domenici A., Lipari G., Vardanega T.: HRT-
UML: Taking HRT-HOOD onto UML, Reliable Software Technologies Ada Europe 2003,
Springer Verlag. LNCS(2655): 405-416, June 2003 (ISBN: 3-540-40376-0).

9. Vardanega T., Di Natale M., Mazzini S., D'Alessandro M.: Component-Based Real-Time
Design: Mapping HRT-HOOD to UML, IEEE CS Press, In: Proc. 30th Euromicro
Conference, pp. 6-13, September 2004 (ISSN: 1089-6503).

10. Vardanega T., Zamorano J., de la Puente J.A.: On the Dynamic Semantics and the Timing
Behaviour of Ravenscar Kernels, Real-Time Systems, 29(1):5989, 2005. Kluwer
Academic Publishers (ISSN: 0922-6443).

11. Goodenough, J., and Sha, L. The priority ceiling protocol: a method for minimizing the
blocking of high priority Ada Tasks. Technical Report SEI-SSR-4, Software Engineering
Institute, Pittsburgh, Pennsylvania, 1988.

12. Dijkstra, E. 1975. Guarded commands, nondeterminacy and formal derivation of
programs. CACM 18(8): 453– 457.

13. M. Bordin, T. Vardanega: Automated Model-based Generation of Ravenscar-compliant
Source Code, In: Proc. 17th Euromicro Conference on Real-Time Systems, July 2005,
IEEE, 69–-77 (ISBN: 0-7695-2400-1, ISSN:1068-3070).

14. Bordin M., Vardanega T.: A New Strategy for the HRT-HOOD to Ada Mapping, Reliable
Software Technologies – Ada-Europe 2005, Springer. LNCS(3555):51-–66, June 2005
(ISBN: 3-540-26286-5).

15. Ober I., Graf S., Ober I.: Validating timed UML models by simulation and verification. In
STTT, Int. Journal on Software Tools for Technology Transfer, Springer 2005.

16. Latella D., Majzik I., Massink M.. Automatic verification of a behavioral subset of UML
statechart diagrams using the SPiN model-checker. Formal Aspects of Computing, (11),
1999.

17. Packet Utilization Standard, European Space Agency, ESA PSS-07-101, (ECSS version
ECSS-E-70-41). Available from: http://www.ecss.nl/forums/ecss/_ templates/default.htm?
target = http://www.ecss.nl/forums/ecss/dispatch.cgi/standards/showFolder/100004/def/
def/a492

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 326 – 339, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Formalizing MDA Components

Liliana Favre and Liliana Martinez

Universidad Nacional del Centro de la Provincia de Buenos Aires
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC)

Argentina
{lfavre, lmartine}@exa.unicen.edu.ar

Abstract. The Model Driven Architecture (MDA) promotes the use of models
and model transformations for developing software systems. The idea behind
MDA is to manage the evolution from Platform Independent Models to
Platform Specific Models that can be used to generate executable components
and applications. The concepts of metamodels and metamodel-based model
transformations are critical in MDA. In this paper, we propose a metamodeling
technique to reach a high level of reusability and adaptability of MDA
components. In particular, we analyze how to define reusable components for
the standard design patterns in a way that fits MDA very closely. To define
families of reusable components we describe a “megamodel” that refers to
metamodels and model transformations organized into an architectural
framework. We propose a “megamodel” formalization that focuses on
interoperability of formal languages in Model Driven Development (MDD).

1 Introduction

The Model Driven Architecture (MDA) is an initiative of the Object Management
Group (OMG) that promotes the use of models and model transformations for
developing software systems. MDA distinguishes at least three kinds of models:
Platform Independent Model (PIM), Platform Specific Model (PSM) and
Implementation Specific Model (ISM). A PIM is a model that contains no reference
to the platforms that are used to realize it. A PSM describes a system in the terms of
the final implementation platform e.g., .NET or J2EE. An ISM refers to components
and applications using specific languages such as Java or Eiffel. The idea behind
MDA is to manage the evolution from PIMs to PSMs that can be used to generate
ISMs [14].

Metamodeling has become an essential technique to support model transfor-
mations. In MDA, metamodels are expressed using MOF (Meta Object Facility) that
defines a common way for capturing all the diversity of modeling standards and
interchange constructs [16].

The success of MDA depends on the definition of model transformations and
component libraries which make a significant impact on tools that provide support for
MDA. MDA is a young approach and several technical issues are not adequately
addressed. For instance, existing MDA-based tools do not provide adequate support to
deal with component-based reuse [5].

 Formalizing MDA Components 327

In this light, we propose a metamodeling technique to reach a high level of
reusability and adaptability of MDA components. In particular, we analyze how to
define reusable components for the standard design patterns with the MDA approach.

[2] analyzes the popular Gamma et al´s design patterns [11] to identify which ones
can become reusable components in an Eiffel library. Their work hypothesis is that
“design patterns are good, but the components are better” because they are reusable in
terms of code. Our work takes up these ideas and contributes a metamodeling
technique to build reusable design pattern components in a MDA perspective.

We propose a “megamodel” to define families of design pattern components by
means of PIM-, PSM- and ISM-metamodels and their interrelations. Instances of the
“megamodel” are reusable components that describe specific design patterns at
different levels of abstraction (PIMs, PSMs and ISMs). They can be viewed as
“megacomponents” that allow defining in a concise way as many components as
different pattern solutions can appear. We analyze metamodel transformations of both
PIMs into PSMs, and PSMs into ISMs.

Developing reusable components requires a high focus on software quality. In this
direction the traditional techniques for verification and validation are still essential to
achieve software quality. In this paper, we describe foundations for constructing
formalizations of design pattern component. We define a “megamodel” formalization,
in particular, we show how to formalize MOF-metamodels and metamodel-based
model transformations by using the metamodeling notation NEREUS that can be
viewed as an intermediate notation open to many other formal languages [8], [9]. We
illustrate our MDA-based approach by using the Observer design pattern.

This paper is organized as follows. Section 2 describes a “megamodel” to define
MDA components and Section 3, how to specify design pattern components in a
MDA perspective. Section 4 presents formalization for MOF-metamodels in terms of
the NEREUS language. Section 5 describes how to build automatically a
formalization of components (that are instances of the “megamodel”). Section 6 deals
with related work. Finally, Section 7 considers conclusions and future work.

2 A “Megamodel” for Defining MDA Reusable Components

We propose a metamodeling technique to define MDA components. In the MDA,
modeling languages and model transformations are defined in the same way through
MOF-based metamodels. A metamodel is an explicit model of the constructs and
rules needed to build specific models. MOF-based metamodels use an object
modeling framework that is essentially a subset of the UML core [20]. The 4 main
modeling concepts are “classes, which model MOF metaobjects; associations, which
model binary relations between metaobjects; Data Types, which model other data and
Packages, which modularize the models” [16, pp. 2-6]. OCL (Object Constraint
Language) can be used to attach consistency rules to metamodel components [17].
The UML metamodel can be viewed as an instance the MOF. OMG is working on the
definition of a QVT (Query, View, Transformations) metamodel for expressing
transformations as an extension of MOF [18].

To define families of reusable components we describe a “megamodel” that refers
to metamodels and model transformations organized into an architectural framework.

328 L. Favre and L. Martinez

PIM
Metamodel

Postcondition

Parameters

Precondition
Postcondition

Refinement
PIM-PSM

**
source
1

PSM
Metamodel 1

*
 target

ISM
Metamodel

Refinement
PSM-ISM

* *
 source
 1

*

 target
 1 *

Postcondition

Parameters

Precondition
Postcondition

Fig. 1. A “megamodel” for MDA components

Observer Pattern
PIM Metamodel
UML/OCL

Refinement
PIM to PSM EIFFEL

Refinement
PIM to PSM J2EE

Observer Pattern
PSM Metamodel
J2EE

Observer Pattern
ISM Metamodel
EIFFEL

Observer Pattern
ISM Metamodel
JAVA

Refinement
PSM EIFFEL to ISM Eiffel

Refinement
PSM J2EE to ISM JAVA

Observer Pattern
PSM Metamodel
 EIFFEL

Observer Pattern
PSM Metamodel
.NET

Observer Pattern
ISM Metamodel
C#

Refinement
PSM .NET to ISM C#

Refinement
PIM to PSM .NET

Fig. 2. An instance of the “megamodel”- The Observer Pattern Component

Fig.1 depicts a “megamodel” that associates a set of classes linked to metamodels and
refinements. The class PIM-Metamodel describes a family of PIMs, and the class
Refinement PIM-PSM a family of refinements among PIM- and PSM- metamodels.
Vertical refinements refine a source model into a target model at a different
abstraction level (PIM to PSM, PSM to ISM). In this context, a refinement is a more
detailed specification that conforms to another which is more abstract. It is associated
to a source metamodel and a target metamodel and is composed by parameters, local

 Formalizing MDA Components 329

operations, preconditions and postconditions. The precondition states the conditions
that must be hold whenever the transformation is applied. The postcondition states the
properties that the transformation guarantees when it was applied. OCL contracts
describe conditions that must be met for a refinement step to be consistent.

In Fig. 2 we show an instance of the “megamodel” that refers concrete instances
of an Observer pattern metamodel, refinements and, links between metamodels and
refinements. It can be viewed as a “megacomponent” defining a family of reusable
components that integrate instances of PIMs, PSMs and ISMs.

3 Specifying Design Pattern Components with MDA

In this section we analyze how to specify design patterns with MDA. We illustrate our
MDA-based approach by using the Observer design pattern. It “defines a one-to-
many dependency between objects so that when one object changes state, all its
dependents are notified and updated automatically” [11, pp. 293]. We show how to
build PIM-and PSM- metamodels and how to define refinements between them.

3.1 PIM-Metamodel of the Observer Pattern

The Observer pattern metamodel at PIM level specifies the structural and behavior
views of this pattern in a platform independent pattern model. It specifies the classes
that participate, its operations and attributes and the relation between classes. The
specialized UML metamodel of the Observer pattern is partially shown in Fig. 3. The
shaded metaclasses correspond to metaclasses of the UML metamodel, whereas the
remaining corresponds to the specialization of the UML metamodel of the Observer
pattern. Fig. 4 partially shows some well-formedness rules in OCL for the metamodel.

In Gamma et al´s design pattern there are four essential participants: Subject,
Observer, ConcreteSubject and ConcreteObserver [11]. So, these four classes must be
specified in the metamodel, as well as the relation between them and their
interactions. The PIM metamodel involves the following participants linked to them:

AbstractObserver: This metaclass specifies the characteristics of class Observer
inside the Observer pattern. It should have at least an operation with the
characteristics of Update. Each instance of this metaclass can be an abstract class or
an interface. If the instance is an abstract class, a concrete observer inherits its
behavior, therefore there is an inheritance relation with the concrete observer. If the
instance is an interface, there is a realization relation with the concrete observer.

ConcreteObserver: This metaclass specifies the characteristics of a concrete
observer. It knows the subject (or the subjects), then it is associated to
ConcreteSubject through a unidirectional association navigable away from that end.

AbstractSubject: Each instance of this metaclass can be an abstract class or an
interface and it has at least three operations specified by Attach, Detach and Notify. If
the instance of this metaclass is an abstract class, all concrete subjects inherit its
behavior, therefore there is an inheritance relation with the concrete subject. If the
instance is an interface, there is a realization relation with the concrete subject. If the
instance of AbstractSubject is an abstract class, it is associated to an instance of
AbstractObserver through a unidirectional association navigable away from that end.

330 L. Favre and L. Martinez

Class ifier

Operation

Association

AssociationEnd

Attribute

Update

Abs tractObserver

1..*1..*

AssocEndObservers

0..*
1

0..*
1

RelationshipObserver

1

1..*

1

1..*

ObserverState

SubjectObserver
11 11

ConcreteObserver

1

1

1

1

1..*

1

1..*

1

AssocEndSubject

11 11

Attach Detach Notify

AssocEndConcreteObserver
1..*

1

1..*

1

Abs tractSubject

0..*
1

0..*
1

1..*1..* 1..*1..* 1..*1..*

ObserverSubject
11 11

Relationship

Class

RelationshipSubject

1

1..*

1

1..*

AssocEndConcreteSubject
11 11

SubjectState

SetState

GetState

ConcreteSubject

1

1

1

1

1..*

1

1..*

1

1..*

1

1..*

1

1..*1..*

1..*1..*

ClassifierRole

 Operation
(from Core)

 CallOperationAction
(from Messaging Action)

1
0..*

1
0..*

Message

1
*
1
*

AssociationEnd
Role

AssociationRole

ObserverSubjectAssocEndConcreteSubject AssocEndConcreteObserver

ObserverSubjectRole

1+base 1

ConcreteSubject

AssocEndSubjectRole

1+base 1

11 11

ConcreteObserver

UpdateMessage

GetStateMessage
*

1

+succesor*

+predecessor1

11

+activator

AssocEndObserverRole

1+base 1

11 11

NotifyMessage

*

1

+successor*

+predecessor1

*

1

*

+activator 1

SubjectRole

1 1
+sender

1 1

1 1
+receiver

1 1

1..*+base 1..*

1

*

+receiver
1

*

1

*
+sender

1

*

**

ObserverRole

1..*+base 1..*

1+receiver 1 1

0..1

+sender
1

0..1

**

SetStateMessage

1

1

+predecessor1

+succesor111

+activator
1

1
+receiver

1
1 1

1 +sender
1

1

a. Class Diagram Metamodel

b. Collaborations Metamodel

Fig. 3. A simplified PIM-Metamodel of the Observer Pattern

ConcreteSubject: This metaclass specifies the characteristics of a concrete subject.
It has at least two operations specified by GetState and SetState and its internal state is
specified by the ObserverState metaclass.

 Formalizing MDA Components 331

Fig. 4. OCL rules- Class Diagram Metamodel

EiffelClassRoutine

Association

AssociationEnd

Attribute

Update

AbstractObserver

1..*1..*

AssocEndObservers

0..*

1

0..*

1

Relationship
Observer

1

1..*

1

1..*

ObserverState

SubjectObserver

11 11

ConcreteObserver

1

1

1

1

1..*

1

1..*

1

Generalization

AssocEndSubject
11 11

Attach
Detach Notify

AssocEndConcreteObserver
1..*

1

1..*

1

AbstractSubject

0..*
1

0..*
1

1..*1..*
1..*1..* 1..*1..*

ObserverSubject
11 11

Relationship
Subject

1

1..*

1

1..*

AssocEndConcreteSubject
11 11

SubjectState

SetState

GetState

ConcreteSubject

1

1

1

1

1..*

1

1..*

1

1..*

1

1..*

1

1..*1..*
1..*1..*

Feature

Fig. 5. Observer Pattern Metamodel: An Eiffel PSM-metamodel

context AbstractSubject inv:
(self.oclIsTypeOf(Class) and self.isAbstract = #true) or self.oclIsTypeOf(Interface)

 and self.oclIsTypeOf(Interface) implies self.assocEndSub ->isEmpty()

context AssocEndConcreteSubject inv:
self.isNavigable= #true and (multiplicity.range.lower >= 0)
and (self.multiplicity.range.upper > 0 or self.multiplicity.range.upper = #unlimited)

context AssocEndSubject inv:
self.isNavigable= #false and (multiplicity.range.lower >= 0)
and (self.multiplicity.range.upper > 0 or self.multiplicity.range.upper = #unlimited)

context Attach inv:
self.isQuery= #false and self.parameter->notEmpty() and self.parameter->
select(param |param.kind= #in and param.type= oclIsKindOf(AbstractObserver)) -> size() = 1

context ConcreteObserver inv:
 self.oclIsTypeOf(Class) and self.isAbstract = #false

context ConcreteSubject inv:
self.oclIsTypeOf(Class) and self.isAbstract = #false

context RelationshipObserver inv:
self.oclIsTypeOf(Generalization) or
(self.oclIsTypeOf(Abstraction) and self.stereotype.name= ‘realize’)
and self.oclIsTypeOf(Generalization) implies (self.parent.oclIsKindOf(Class) and

self.parent.oclIsTypeOf(AbstractObserver) and self.child.oclIsTypeOf(ConcreteObserver))
and self.oclIsTypeOf(Abstraction) implies (self.supplier.oclIsKindOf(Interface) and

self.supplier.oclIsTypeOf(AbstractObserver) and self.client.oclIsTypeOf(ConcreteObserver))
…

332 L. Favre and L. Martinez

3.2 PSM-Metamodel of the Observer Pattern

For each design pattern at the PIM level there are a number of metamodels
corresponding to different platforms at the PSM level. The metamodel of the
Observer pattern in an EIFFEL platform is described below. Fig. 5 partially shows an
UML specialized metamodel of the Observer pattern in the Eiffel platform (structural
view). The shaded metaclasses correspond to metaclasses of the Eiffel metamodel.

3.3 Specifying Metamodel-Based Model Transformations

A model transformation is a specification of a mechanism to convert the elements of
a model, that are instances of a particular metamodel, into elements of another model
which can be instances of the same or different metamodels. Metamodel
transformations are a specific type of model transformations that impose relations
between pairs of metamodels. They can be used in the specification stages of the
MDA-based developments to check the validity of a transformation.

Transformation PIM-UML TO PSM-EIFFEL {
parameters
sourceModel: Design Pattern Metamodel :: Package
targetModel: Design Pattern Metamodel-EIFFEL :: Model
local operations
equivalentType (a_type: Design Pattern Metamodel::Classifier,
 another_type: Design Pattern Metamodel-EIFFEL::Classifier): Boolean…
pre: sourceModel.importedElement isEmpty
post:
sourceModel.ownedElement select(oclIsTypeOf(Class) or oclIsTypeOf(Interface)) size() =
 targetModel.ownedElement select(oclIsTypeOf(EiffelClass)) size()
post:
sourceModel.ownedElement select(oclIsTypeOf(Class)) forAll (sourceClass /
targetModel.ownedElement->select.(oclIsTypeOf(EiffelClass)) exists (targetClass /
sourceClass.name = targetClass.name and
sourceClass.generalization.parent = targetClass.generalization.parent and
sourceClass.specialization.child = targetClass.specialization.child and
sourceClass.templateParameter = targetClass.templateParameter and
sourceClass.feature select (oclIsTypeOf(Attribute)) forAll (sourceAtt /
 targetClass.feature select (oclIsTypeOf(Attribute)) exists (targetAtt /
 sourceAtt.name = targetAtt.name and sourceAtt.visibility = targetAtt.visibility and
 equivalentType(sourceAtt.type, targetAtt.type))) and
sourceClass.feature select (oclIsTypeOf(Operation)) forAll (sourceOp /
 targetClass.feature select (oclIsKindOf(Routine)) exists (targetOp /
 targetOp.name = sourceOp.name and equivalentType (targetOp.type, sourceOp.type) and
 sourceOp.parameter size() = targetOp.parameter size() and
 Sequence {1..(sourceOp.parameter size())} forAll (index:Integer /

 targetOp.parameter at(index).name = sourceOp.parameter at(index).name and
 equivalentType(targetOp.parameter at(index).type, sourceOp.parameter at(index).type))))
)) … }

Fig. 6. Specifying refinements in OCL: From PIMs to PSMs

We specify metamodel-based model transformations as OCL contracts that are
described by means of a transformation name, parameters, preconditions, postcondi-
tions and additional operations. In Fig. 6, we partially exemplify a transformation
Observer Pattern component from a PIM to an Eiffel-based PSM.

 Formalizing MDA Components 333

The definition of the transformation from PIM to PSM uses both the specialized
UML metamodel of the Observer pattern and the UML metamodel of an Eiffel
platform as source and target parameters respectively. The source metamodel
describes a family of packages whose elements are only classes and associations. The
postconditions establish correspondences among classes, their superclasses,
parameters, operations, and associations. The transformation specification guarantees,
for instance, that for a class sourceClass in the source model exists a class targetClass
in the target model, both of them with the same name, the same parent classes, the
same child classes and so on.

4 Formalization of MOF-Metamodels

Formalisms can be used to detect inconsistencies in MDDs whether in internal models
or between a source model and a target model that has been obtained through model
transformations. A formal specification clarifies the intended meaning of metamodels
and metamodel-based model transformations helping to validate them and providing
reference for implementation. In this direction, we propose the metamodeling notation
NEREUS and, a system of transformation rules to transform MOF-based metamodels
into NEREUS. Most of the MOF-based metamodel concepts can be mapped to
NEREUS in a straightforward way. MOF is based on UML and OCL which are too
imprecise and ambiguous when it comes to simulation, verification, validation and
forecasting of system properties.

NEREUS consists of several constructs to express classes, associations and
packages and a repertoire of mechanisms for structuring them. Fig. 7 shows the
syntax of NEREUS specifications.

CLASS className [<parameterList>]
IMPORTS <importsList>
INHERITS <inheritsList>
IS-SUBTYPE-OF <subtypeList>
GENERATED-BY <basicConstructors>
ASSOCIATES<associatesList>
DEFERRED
TYPES <typesList>
FUNCTIONS <functionList>
EFFECTIVE
TYPES <typesList>
FUNCTIONS <functionList>
AXIOMS <varList>
<axiomList>
END-CLASS

ASSOCIATION <relationName>
IS <constructorTypeName>
[…: Class1;…: Class2; …: Role1; …:
Role2;…: mult1; …: mult2; …: visibility1;
…: visibility2]
CONSTRAINED-BY <constraintList>
END

PACKAGE packageName
IMPORTS <importsList>
INHERITS <inheritsList>
<elements>
END-PACKAGE

Fig. 7. The NEREUS syntax

NEREUS distinguishes inheritance from subtyping. Subtyping is like inheritance
of behavior, while inheritance relies on the module viewpoint of classes. The
DEFERRED and EFFECTIVE clauses declare new types or operations that are
incompletely or completely defined.

Operations are declared in FUNCTIONS clauses. NEREUS supports higher-order
operations. In the context of OCL Collection formalization, second-order operations

334 L. Favre and L. Martinez

are required. NEREUS provides a taxonomy of constructor types that classifies binary
associations according to kind (aggregation, composition, association, association
class, qualified association), degree (unary, binary), navigability (unidirectional,
bidirectional), connectivity (one-to one, one-to-many, many-to-many). New
associations can be defined by the ASSOCIATION construction. The PACKAGE
construct groups classes and associations and controls its visibility (see Fig. 7).

We define semantics by giving a precise formal meaning to each of the constructs
of the NEREUS language in terms of the CASL language [4]. A detailed description
may be found at [8].

CLASS Detach… END-CLASS

CLASS Notify … END-CLASS

CLASS Update… END-CLASS

CLASS RelationshipObserver
IS-SUBTYPE-OF Relationship
ASSOCIATES
<<AbstractObserver-RelationshipObserver>>,
<< RelationshipObserver-ConcreteObserver>>
…
AXIOMS r:RelationshipObserver;…
oclIsTypeOf(Generalization, r) or
(oclIsTypeOf(Abstraction, r) and
equal (get_name(stereotype(r), ´realize´)
oclIsTypeOf(Generalization,r)implies
oclIsKindOf(Class, r)
END-CLASS

CLASS ConcretSubject … END-CLASS

CLASS ConcreteObserver … END-CLASS
3

CLASS AssocEndConcreteObserver …
END-CLASS

ASSOCIATION
AssocEndSubject-SubjectObserver
IS Bidirectional-1 [AssocEndSubject: Class1;
SubjectObserver: Class2; assocEndSub:role1;
sub-obs:role2; 1:mult1; 1:mult2; +:visibility1;
+:visibility2]
END

ASSOCIATION
AssocEndSubject-AbstractSubject
…
ASSOCIATION
AbstractSubject-RelationshipSubject
…
ASSOCIATION
AbstractObserver-RelationshipObserver
IS Bidirectional-3[AbstractObserver:Class1;
RelationshipObserver:Class2; absObs:role1;
relObs:role2; 1:mult1;1..*:role2;+:visibility1;
 +:visibility2]
END

ASSOCIATION AbstractSubject-Attach …

END-PACKAGE

PACKAGE ObserverMetamodel
IMPORTS Core
CLASS AssocEndSubject
IS-SUBTYPE-OF AssociationEnd
ASSOCIATES
<< AssocEndSubject-SubjectObserver >>,
<< AssocEndSubject-AbstractSubject >> …
END-CLASS

CLASS SubjectObserver …END-CLASS

CLASS AssocEndObservers …END-CLASS

CLASS AbstractSubject
IS-SUBTYPE-OF Classifier
ASSOCIATES
<<AssocEndSubject-AbstractSubject>>,
<< AbstractSubject-RelationshipSubject >>,
 <<AbstractSubject-Attach>>,
<<AbstractSubject-Detach>>,
<<AbstractSubject-Notify>> …
AXIOMS s:AbstractSubject;..
(oclIsTypeOf(Class,s) and isAbstract (s)) or
oclIsTypeOf(Interface, s)
oclIsTypeOf (Interface,s) implies
isEmpty (assocEndSub (s))
END-CLASS

CLASS AbstractObserver
IS-SUBTYPE-OF Classifier
ASSOCIATES
<< AssocEndObservers-AbstractObserver>>,
<<AbstractObserver-Update>>,
<<AbstractObserver-RelationshipObserver>> …
END-CLASS

CLASS Attach
IS-SUBTYPE-OF Operation
ASSOCIATES <<AbstractSubject-Attach>> …
FUNCTIONS…
AXIOMS at:Attach
(isQuery (at) = False) and
notEmpty (
get_formalParameter (Operation-Parameter, at))
and size (selectparam (
get_formalParameter (Operation-Parameter, at),
[equal(kind (param),´in´) and
equal (type(param),
oclIsKindOf(AbstractObserver,at)]) = 1
END-CLASS

Fig. 8. Specifying MOF-metamodels in NEREUS: The Observer Pattern Metamodel

 Formalizing MDA Components 335

Fig. 8 partially shows the NEREUS specification of the simplified UML meta-
model shown in Fig 3-a. In this example, the association names refer to the names of
the associated classes, for instance AbstractObserver-RelationshipObserver denotes
an association between AbstractObserver and RelationshipObserver. The axioms of
Attach and RelationshipObserver classes are linked to the OCL well-formedness rules
of Fig. 4.

5 Formalization of Instances of the “Megamodel”

The formalization implies formalizing metamodels, refinements and links among
them. We describe how to transform metamodels and metamodel-based refinements.

5.1 Constructing Metamodel Formalizations

MOF-metamodels and NEREUS have similar constructs and structuring mechanisms.
Then, every package in a metamodel is translated into a package in NEREUS. Also,

RULE OCL NEREUS
1 v. operation (v’)

v->operation (v’)
operation (v, v’)

2 context A
object.rolename

get_ rolename (a, object)
Let a:A

3 OCLexp1 = OCLexp2 Translate NEREUS (OCLexp1) =
Translate NEREUS (OCLexp2)

4 e.op op (Translate NEREUS (e))
5 collection->op(v:Elem|bool-expr-with-v)

op ::=select| forAll| reject| exists

LET
FUNCTIONS
f: Elem -> Boolean
AXIOMS v : Elem
f (v)=Translate NEREUS (bool-expr-with-v)
IN op (collection, f)
END-LET

opv (collection,
[Translate NEREUS (bool-expr-with-v)]
 Equivalent concise notation

CLASS Attach
IS-SUBTYPE-OF Operation
ASSOCIATES <<AbstractSubject-Attach>>
EFFECTIVE
FUNCTIONS
…
AXIOMS at:Attach
isQuery (at)= False and Rules 1, 3
notEmpty (get_formalParameter (Operation-Parameter, at)) and Rules 2, 3
size (selectpar (get_formalParameter (Operation-Parameter, at), Rules 1, 3, 4, 5
[equal (kind (par),´in´) and equal (type(par), oclIsKindOf(AbstractObserver,at)]) =1
END-CLASS

Fig. 9. Constructing the Class Attach in NEREUS

336 L. Favre and L. Martinez

every class or association in a metamodel is translated into a class or an association in
NEREUS. A detailed analysis may be found at [8].

The transformation process of OCL specifications to NEREUS is supported by a
system of transformation rules. In metamodels, OCL specifications can appear as
preconditions, postconditions or invariants of classes, attribute constraints, association
constraints and transformation contrats. Analyzing OCL specifications we can derive
axioms that will be included in the NEREUS specifications. Preconditions written in
OCL are used to generate preconditions in NEREUS. Postconditions and invariants
allow us to generate axioms in NEREUS. An operation can be specified in OCL by
means of pre- and post-conditions. Fig. 9 shows how to transform the class Observer.
Let TranslateNEREUS be functions that translate logical expressions of OCL into first-
order formulae in NEREUS.

precondition

postcondition

Metamodel_1

Metamodel_2

 Transformation

CLASS name [metamodelName1:source; metamodelName2: target]
GENERATED-BY create, addLink
EFFECTIVE
TYPE name

FUNCTIONS
create: -> name
addLink: name (t) x metamodelName1 (m1) x metamodelName2 (m2) -> name
pre: TranslateNEREUS (Transformation.precondition)
remove: name (t) x metamodelName1 (m1) x metamodelName2 (m2) -> name
pre: isRelated (t, m1, m2)
isRelated: name x metamodelName1 x metamodelName2 -> Boolean
isEmpty: name -> Boolean
get_Pim: name (t)-> metamodelName1
pre: not isEmpty (t)
get_Psm: name (t)-> metamodelName2
pre: not isEmpty (t)

AXIOMS t: name; m1, m3: metamodelName1; m2,m4: metamodelName2
isRelated (create(), m1, m2) = False
isRelated (addLink (t, m1, m2), m3, m4) = equal (m1,m3) and equal (m2,m4)
isEmpty (create())= True
isEmpty (addLink (t, m1, m2))= False
get_Pim (addLink (t, m1, m2))= m1
get_Psm (addLink (t, m1, m2))= m2
isRelated (t,m1,m2) implies TranslateNEREUS (Transformation.postcondition)
END-CLASS

Fig. 10. Formalizing refinements- A Transformation Scheme

 Formalizing MDA Components 337

5.2 Formalizing Refinements

Instances of refinement classes are translated into NEREUS specifications by
instantiating reusable schemes. Fig. 10 depicts the scheme for translating refinements
into NEREUS. Following, we show an instantiation of the scheme for the
transformation PIM-UML TO PSM-EIFFEL (Fig. 6):

[name: PimToPsm; metamodelName1: PimMetamodel; metamodelName2:
 PsmMetamodel; precondition: OCLexp1; postcondition: OCLexp2]

where OCLexp1and OCLexp2 are the OCL expressions following the “pre:” and
“post” in Fig. 6 respectively.

TranslateNEREUS(OCLexp1)and TranslateNEREUS (OCLexp2) are the expressions in
italic following the “pre:” and “isRelated (t, m1,m2) implies “ in Fig. 10 respectively:

TranslateNEREUS(OCLexp1) =
isEmpty(get_importedElements(ElementImport-PackageableElement, m1))

TranslateNEREUS (OCLexp2) =
size(select s(get_ownedElement(Element-Element, s),
 [oclIsTypeOf(Class,m1) or oclIsTypeOf(Interface, m1)]) =
size(select e (get_ownedElement(Element-Element,m2),
 [oclIsTypeOf(EiffelClass,c)]) and
 forAll sourceClass(select source (get_ownedElement(Element-Element,source),
 [exists targetClass (select tc (get_ownedElement(Element-Element), tc),
 [oclIsTypeOf(EiffelClass, tc)]),

 [name(sourceClass) = name(targetClass)] and…

6 Related Work and Discussion

[1] describes how a metamodel can be used to obtain a representation of design
patterns and how this representation allows both automatic generation and detection
of design patterns. The contribution of this proposal is the definition of design
patterns as entities of modeling of first class. The main limitation of this approach
concerns the integration of the generated code with the user code.

[12] describes an approach to rigorous modeling of pattern-based transformations
that involves specializing the UML metamodel to characterize source and target
models.

[10] presents a technique to specify pattern solutions expressed in the UML. The
specifications created by this technique are metamodels that characterize UML design
models of pattern solutions. The patterns specification consists of a Structural Pattern
Specification that specifies the class diagram view of pattern solutions, and a set of
Interaction Pattern Specification that specifies interactions in pattern solutions.

Component-based approaches have been proposed to reuse [3], [7], [15], [19]. [3]
summarizes lessons from several projects related to component-based development
and MDA and examines the pragmatic use of today’s MDA tools.

Several specification of UML, metamodels and model transformations have been
proposed. [13] compare and contrast two approaches to model transformations: one is
graph transformation and the other is a relational approach. In [6] a taxonomy for the

338 L. Favre and L. Martinez

classification of several existing and proposed model-to-model transformations
approaches is analyzed. The taxonomy is described with a feature model to compare
them.

Currently, there are not many of CASE tools that provide some support for MDA.
Some of them are OptimalJ, ArcStyler, AndroMDA, Ameos, Codagen among others
[5]. Techniques that currently exist in UML CASE tools provide little support for
analyzing consistency of model transformations.

In contrast to other work, our approach is the only one focusing on interoperability
of formal languages in component-based model-driven development. We define
NEREUS to take advantage of all the existing theoretical background on formal
methods in different stages of MDD. NEREUS would eliminate the need to define
formalizations and specific transformations for each different formal language. In a
Model Driven Development (MDD) different tools could be used to validate/ verify
models at different abstraction levels (PIMs, PSMs, or implementations).

Our motivation was to integrate design patterns components with MDA-based
forward engineering processes [8]. The following advantages between our approach
and some existing ones are worth mentioning. A design pattern metamodel allows
detecting the presence of a pattern in a family of models. If there were no
metamodels, a library of models specifying each one the ways in that the design
pattern can appear should be necessary (this is expensive). Also, it should be
necessary to compare the model that is analyzed with the models of the library to see
if matching exists. On the other hand, the specification of the metamodels in the three
levels allows us to refine pattern model step-by-step in a MDA perspective.

7 Conclusions and Future Work

In this paper we analyze a metamodeling technique to reach a high level of reusability
and adaptability of MDA-based design pattern components. We propose a
“megamodel” for defining families of reusable design pattern components. The idea is
to describe them through PIM-, PSM- and ISM-metamodels and metamodel-based
refinements. We use our approach to specify standard design patterns.

Rather than requiring developers to manipulate formal specifications, we want to
provide rigorous foundations for MDDs in order to develop tools that, on one hand,
take advantage of the power of formal languages and, on the other hand, allow
developers to directly manipulate the MDA-based models that they have created.
However, meta-designers need to understand metamodels and metamodel-based
transformations. We foresee to integrate our results in the existing MDA CASE tools
experimenting with different platforms [5].

References

1. Albin-Amiot H., Guéhéneuc Y.: Meta-modeling Design Patterns: application to pattern
detection and code synthesis. In Tekinerdogan, B. (ed.). Proceeding of ECOOP Workshop
on Automating Object-Oriented Software Development Methods (2001)

2. Arnout, K.: From Patterns to Components. Ph. D. Thesis, Swiss Institute of Technology
(ETH Zurich) (2004)

 Formalizing MDA Components 339

3. Bettin, J.: Practicalities of Implementing Component-Based Development and Model-
Driven Architecture. Proceedings of Workshop Process Engineering for Object-Oriented
and Component-Based Development, OOSPLA 2003, USA (2003)

4. Bidoit, M., Mosses, P.: CASL User Manual- Introduction to Using the Common Algebraic
Specification Language. Lecture Notes in Computer Science 2900. Springer-Verlag, Berlin
Heidelberg New York (2004)

5. CASE TOOLS www.objectbydesign.com/tools (2005)
6. Czarnecki, K., Helsen, S.: Classification of Model Transformation Approaches. In: Bettin

J. et al. (eds). Proceedings of OOSPLA’03 Workshop on Generative Techniques in the
Context of Model-Driven Architecture. www.oopsla.acm.org/oopsla2003 (2003)

7. D´Souza, D., Cameron Wills, A.: On Components, and Framework with UML. Addison-
Wesley (1999)

8. Favre, L.: Foundations for MDA-based Forward Engineering. Journal of Object
Technology (JOT). Vol 4, N° 1, Jan/Feb (2005) 129-153

9. Favre, L.: A Rigorous Framework for Model Driven Development. In: T. Halpin, J.
Krogstie and K. Siau (eds.). Proceedings of CAISE´05 Workshops. EMMSAD ´05 Tenth
International Workshop on Exploring Modeling Method in System Analysis and Design
Porto, Portugal: FEUP Editions (2005) 505-516

10. France, R., Kim, D., Ghosh, S., Song, E.: A UML-Based Pattern Specification Technique.
IEEE Transactions on Software Engineering. Vol. 30, Nº 3, March. IEEE Computer
Society (2004) 193-206

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley (1995)

12. Judson, S., Carver D., France, R.: A metamodeling approach to model transformation.
OOPSLA Companion 2003 (2003) 326-327

13. Kuster, J., Sendall S., Wahler M.: Comparing Two Model Transformation Approaches.
In: Bezivin, J. et. al (eds.). Proceedings of OCL and Model Driven Engineering Workshop.
Lisboa, Portugal. http://www.cs.kent.ac.uk/projects/ocl/oclmdewsuml04 (2004)

14. MDA: The Model Driven Architecture www.omg.org/mda (2005)
15. Meyer B.: The Grand Challenge of Trusted Components. Proceedings of the 25th

International Conference on Software Engineering, Portland, Oregon (2003) 660-667
16. MOF: Meta Object facility (MOF ™) 1.4. formal/2002-04-03 www.omg-org/mof (2005)
17. OCL: OCL Specification. Version 2.0. Formal document: ptc/03-10-14 www.omg.org

(2005)
18. QVT: Revised submission for MOF 2.0 Query/Views/Transformations RFP. Version 1.1.

OMG Adopted Specification. ptc/05-11-01 www.omg.org (2003)
19. Szyperski, C., Gruntz, D., Murer, S.: Component Software. Beyond Object-Oriented

Programming, Second Edition. Addison-Wesley and ACM Press (2002)
20. UML: UML 2.0 Superstructure Specification. OMG formal/05-07-04 www.omg.org

(2005)

A Component-Oriented Substitution Model

Bart George, Régis Fleurquin, and Salah Sadou

VALORIA Lab., University of South Brittany, France
{Bart.George, Regis.Fleurquin, Salah.Sadou}@univ-ubs.fr

Abstract. One of Software Engineering’s main goals is to build com-
plex applications in a simple way. For that, software components must
be described by its functional and non-functional properties. Then, the
problem is to know which component satisfies a specific need in a spe-
cific composition context, during software conception or maintenance.
We state that this is a substitution problem in any of the two cases.
From this statement, we propose a need-aware substitution model that
takes into account functional and non-functional properties.

1 Introduction

Component-oriented programming should allow us to build a software like a
puzzle whose parts would be units ”subjects to composition by a third party”
[17]. Examples of such units are COTS (Components-Off-The-Shelf), which are
commercial products from several constructors and origins. When one develops
and maintains a component-based software, some problems occur, and we will
notice two main ones: how to select, during conception of such a software, the
most suitable component in order to satisfy an identified need ? And during a
maintenance, if this need evolves, will the chosen component remain suitable, or
shall we replace it ?

We think that these problems are related to a substitution problem. In fact,
when one conceives or maintains an application, some needs appear. And to
describe them, the designer or the maintainer can imagine ideal components.
These are virtual components representing the best ones satisfying these specific
needs. Then the problem is to find the concrete components which are the closest
to the ideal ones. In other words, trying to compose or maintain components
means trying to make concrete components substitute ideal ones.

However, composition doesn’t concern only the functional aspect. Most com-
ponents are ”black boxes” which must describe not only functional, but also non-
functional properties. As every software needs a certain quality, one can’t think
about composing components whose non-functional properties are unknown, and
at the same time hope having its quality requirements satisfied anyway. This is
why substitution must take functional and non-functional properties into ac-
count.

So, how to substitute ? Some may say we just have to use subtyping, as some
object-oriented languages made it a general way of substitution. However, an
ideal component describes more than general needs: it describes the application’s

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 340–353, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Component-Oriented Substitution Model 341

context, a notion that is absent from objects. Let us explain what we mean by
”context”. If we take a need, modeled by an ideal component, we will try to find a
concrete one to substitute it. Now, let us suppose that we already found a suitable
component. We may need to check if there isn’t another one better than the first
one. However, trying to substitute the old candidate by a new one would be a
mistake, because the key notion isn’t the candidate, but the need it is supposed
to satisfy. Plus, if this need changes, a former candidate may no longer remain
suitable. So substitution of an ideal component by a concrete one is performed
only into the context of the need modeled by the ideal component. This is why
a candidate component can replace another one without any subtyping relation
between them, as every candidate is compared only to the ideal component.

In this paper, we consider a generic component model and a quality model
(section 2), and into this framework we define a component-oriented substitution
model, including substitutability rules for every functional and non-functional
element of our model (section 3). In order to illustrate the possibilities of such
a model, we describe the different substitution cases during the life cycle using
a short application example (section 4). Then, before concluding, we describe
some related works (section 5).

2 Component and Quality Models

Definitions given in this paper are placed in the following framework: one compo-
nent model, holding a type system such as Java for EJB, and one quality model
such as ISO 9126 standard [12]. In this framework, we suppose the existence of
metrics to measure non-functional properties (such as those defined in [19]), so
that our contribution will focus only on the substitution model definition.

2.1 The Generic Model

Our goal is not to give yet another definition of what a component is, or what
non-functional properties are. It is to define a component-oriented substitution
that we can apply on many existing component and quality models. That is
why we prefer to give generic models, on which we can apply our substitution
concepts.

The generic component model includes component artifacts, representing the
component’s architectural elements, which are common to most existing compo-
nent models, and which have non-functional properties. As shown in figure 1, we
chose to keep three kinds of component artifacts: components themselves, inter-
faces, and operations. A component contains provided and required interfaces,
and interfaces contain operations. In the remaining of the paper, we refer to can-
didate component and substitutable component when the first one tries to
substitute the second one. Their elements are called respectively candidate el-
ements and substitutable elements. When we find the best candidate for the
substitution, we say the substitutable component or element can be replaced
by this candidate.

342 B. George, R. Fleurquin, and S. Sadou

Fig. 1. Our generic model

Beside the component model, we define a generic quality model. Its elements
are quality characteristics (such as those from ISO 9126 [12]), and metrics. We
use existing metrics to evaluate and compare non-functional properties (see [9]
for a survey). But why metrics ? In the literature, several methods for defining
and evaluating non-functional properties already exist (see [1] for a survey). But
such methods usually focus on one specific property, or family of properties, for
example quality of service, which is only a part of the whole software quality.
Metrics may be applied to many families of properties, and allow comparisons.
This is why we think that in our case, metrics represent the best method for
comparing different non-functional properties.

A component’s quality properties are based on our generic quality model. We
start by describing elements of this quality model in the next subsection, before
introducing their link with the elements of the component model.

2.2 Elements of the Quality Model

This quality model is composed of two elements: quality characteristics which
represent non-functional properties, and metrics, which measure these charac-
teristics (see left part of Figure 1). For the remaining of this paper, we consider
that a metric may measure several quality characteristics (as proposed in the
IEEE standard 1061-1998 [11]), but each characteristic is measured by only one
metric. Elements of the quality model are defined as follows:

Quality characteristics. A quality characteristic, or simply characteristic,
represents a given quality property, preferably a fine-grained attribute (such as
latency), because of our statement that only one metric can measure such a
characteristic.

Metrics. A metric holds a set of quality characteristics it measures. It also holds
a set of artifact types on which it can be calculated (for example: {component,
interface}), the result’s type, and its unit. The metric’s variance explains the

A Component-Oriented Substitution Model 343

relation between the metric’s result and the evaluated quality characteristic. For
example, if a metric calculates an execution time, the variance stipulates that
the lower the value is, the better it is.

Two metric values are comparable only if they are from the same metric. So
having two ”comparable metric values” M1 and M0 means that we have the
same metric M , and we try to compare the value of M on the candidate artifact
A1 with the value of M on the substitutable artifact A0. Having two comparable
metric values M1 and M0, we can check if M1 is superior to M0 according to the
variance. For example, if the metric type is an integer representing the execution
time in milliseconds, then its variance is decreasing. In this case, if M1 is greater
than M0 according to integer comparison, M1 is in fact inferior to M0 according
to M ’s variance.

2.3 Non-functional Specifications

A component artifact is linked to a quality element using a non-functional
specification (noted NFS). An artifact may be related to several quality ele-
ments, so several NFSs belong to only one artifact. An NFS describes the effect
of a quality characteristic on the artifact it belongs to, and uses the metric ap-
plied on the latter. Several NFSs of a same component artifact may share the
same metric, but not the same characteristic.

In Figure 1, the resultValue attribute of an NFS is given by the metric’s
measurement on the artifact. In the case of an ideal component, this attribute
value is given by the application’s designer.

Two NFSs are comparable if the artifacts they belong to are of the same kind
and comparable (see next subsection for comparison definitions), and if they
refer to the same characteristic. Two NFSs are equal if they are comparable and
their resultValue attributes are equal.

2.4 Artifacts

The main element of our generic component model is the artifact. All artifacts,
whatever their kind is, have a quality field, which is a set of NFSs. Two artifacts’
quality fields are comparable if, for each NFS of one quality field, there is at
least one comparable NFS in the other quality field. Two quality fields are equal
if for at least one NFS of one quality field, there is an equal NFS in the other
quality field, and vice versa.

Let us now describe the different kinds of artifacts:

Operations. An interface’s operation is defined by its signature, also called a
type. An operation’s type is defined by the set of its parameters’ types (α1, ... ,
αn)1 and its result’s type β. It is noted (α1, ... , αn) −→ β.

Two operations are comparable if their signatures are comparable. Two oper-
ation signatures T and U are comparable if they are equal modulo the renaming

1 For reasons of simplicity, in the current version of our model we do not take into
account parameters’ order.

344 B. George, R. Fleurquin, and S. Sadou

of the type names, or if there exists a type substitution relationship V so that
V .T equals to U , or T equals to V U , modulo the renaming of the type names.

For example, α −→ α equals to β −→ β if we rename α by β, but α −→ α is
not equal to β −→ γ.

And if we consider Java’s Object type, signature Object −→ Object may be
replaced by Integer −→ Integer if we let Integer substitute Object. It corre-
sponds to Zaremski and Wing’s exact and generalized signature matching for
functions [20].

Two operations are equal if their signatures are equal modulo the renaming
of the type names, and if their quality fields are equal.

Interfaces. A component’s interface is defined by a set of operations.
A candidate provided interface PI1 is comparable to a substitutable provided

interface PI0 if for each operation of PI0 there exists a comparable operation
in PI1. A candidate required interface RI1 is comparable to a substitutable
required interface RI0 if for each operation of RI1, there exists a comparable
operation in RI0. Two interfaces (provided or required) are equal if their quality
fields are equal and if, for each operation of one interface, there exists an equal
operation in the other interface, and vice versa.

Components. A software component is defined by a set of provided interfaces
and a set of required interfaces.

A candidate component C1 is comparable to a substitutable component C0
if for each provided interface of C0 there exists a comparable provided interface
of C1, and for each required interface of C1, there exists a comparable required
interface of C0. If C1 is not comparable to C0, it can not pretend to substitute
C0.

3 Our Substitution Model

For each NFS, we attach a weight (or comparison weight) noted ComparisonS ,
and a penalty noted P enaltyS (S being the NFS). These two values define the
NFS’s importance for the artifact it belongs to. The higher these two values
are, the more important this NFS is, in the whole substitutable component. If a
substitutable artifact owns an NFS and a candidate artifact owns a comparable
one with a superior value, the candidate’s chances increase proportionally with
the comparison weight. Else, the penalty will be used to sanction this lack. A
candidate component may also bring his own new NFSs that the substitutable
component doesn’t have. These new elements will be evaluated by the ideal
component designer.

The substitution distance, or distance, is defined using these weights,
penalties, and NFS’ resultValues. This distance will inform on the substitutabil-
ity of an NFS or an artifact. The best candidate for substitution is the one with
the lowest distance. If the distance is negative, the candidate element can be con-
sidered as ”better” (in terms of quality) than the substitutable one, according
to the current context. If the distance is positive, then the candidate is worse. If

A Component-Oriented Substitution Model 345

the distance equals to 0, then the two compared elements are ”equivalent” each
to the other, but it doesn’t mean that they are equal.

For each component, there is a maximal distance for substitution, fixed by
its designer. Let us consider a component C1, a candidate for the substitution of
another component C0. If the substitution distance between C1 and C0 is bigger
than the maximal distance associated to C0, then C1 will be rejected.

3.1 Substitution Distance Between Artifacts

Here, we will define a calculus that will give the distance separating a candi-
date component C1 from a substitutable component C0 in a given context. This
context is defined by the weight and the penalty allocated to the NFSs of C0’s
artifacts. So, before talking about distance between artifacts, let us present the
distance between their quality fields.

We will suppose that there exists a relation MINx∈E f(x), which selects an
element x from the set E so that the function f(x) has the lowest value.

Distance between artifacts’ quality fields. Let us consider a substitutable
artifact A0, a comparable candidate one A1, and their quality fields (denoted
QA1 and QA0). The substitution distance between these quality fields (denoted
QD) is defined as follows:

QD(QA1 , QA0) =
∑

S0∈QA0
QDSpec(QA1, S0)−

∑
S1∈QA1

QDBonus(S1, QA0)

with:

QDSpec(QA1, S0) = ComparisonS0 ∗(resultV alueS0−V ariance resultV alueS1)
if ∃ S1 in A1 that is comparable to S0; else, P enaltyS0.

and:

QFBonus(S1, QA0) = 0 if ∃ S0 ∈ QA0 that is comparable to S1; else, a value
given by C0’s designer.

To measure the distance between the quality fields, we try to find for each
S0 a comparable NFS S1 in A1 (there can be only one, as NFSs of a same
artifact cannot share the same characteristic). Substituable NFSs without any
comparable S1 are taken into account through their penalty value P enaltyS0.
Candidate NFSs without any comparable S0 are taken into account through a
value given by C0’s designer.

resultV alueS0 −V ariance resultV alueS1 is a subtraction between
resultV alueS0 and resultV alueS1 depending on their metric’s variance. For ex-
ample, if its type is integer or float and variance is increasing, the measurement
will equal to: resultV alueS0 - resultV alueS1. If variance is decreasing, it will
equal to: resultV alueS1 - resultV alueS0.

Distance between incomparable artifacts. If two artifacts are incompara-
ble, there will not be any substitution distance measurement between them.

346 B. George, R. Fleurquin, and S. Sadou

Distance between comparable operations. Let us consider a substitutable
operation O0 and a comparable candidate operation O1. The substitution dis-
tance between them (denoted OpD) is defined as follows:

OpD(O1, O0) = QD(QO1 , QO0)

As long as O1 and O0 are comparable, the distance between them is in fact
the distance between their quality fields.

Distance between comparable provided interfaces. Let us consider a sub-
stitutable provided interface I0, a comparable candidate provided interface I1,
and their sets of operations OpsI1 and OpsI0 . The substitution distance between
I1 and I0 (denoted PID) is defined as follows:

PID(I1, I0) =
∑

O0∈OpsI0
MINO1∈OpsI1

OpD(O1, O0) -∑
O1∈OpsI1

POBonus(O1, I0) + QD(QI1 , QI0)

with:

POBonus(O1, I0) = 0 if ∃ O0 ∈ OpsI0 that is comparable to O1; else, a value
given by C0’s designer.

To measure the distance between the interfaces, we take into account only the
lowest found distance for each O0. Candidate operations without any comparable
O0 are taken into account through a value given by C0’s designer.

Distance between comparable required interfaces. Let us consider a sub-
stitutable required interface I0, a comparable candidate required interface I1, and
their sets of operations OpsI1 and OpsI0 . The substitution distance between I1
and I0 (denoted RID) is defined as follows:

RID(I1, I0) = -
∑

O0∈OpsI0
MINO1∈OpsI1

OpD(O1, O0) -∑
O0∈OpsI0

ROBonus(I1, O0) - QD(QI1 , QI0)

with:

ROBonus(I1, O0) = 0 if ∃ O1 ∈ OpsI1 that is comparable to O0; else, a value
given by C0’s designer.

The principle of distance between required interfaces is the same as for pro-
vided ones, except that it is symmetrical. For provided interfaces, it is better to
have I1 providing better quality than I0, whereas for required interfaces, it is
better to have I1 requiring less quality than I0.

Distance between comparable components. Let us consider a substitutable
component C0, a comparable candidate component C1, their sets of provided
interfaces PIntC1 and PIntC0 , and their sets of required interfaces RIntC1 and
RIntC0 . The substitution distance between C1 and C0 (denoted CD) is defined
as follows:

A Component-Oriented Substitution Model 347

CD(C1, C0) =
∑

PI0∈PIntC0
MINPI1∈PIntC1

PID(PI1, PI0) +
∑

RI1∈RIntC1

MINRI0∈RIntC0
RID(RI1, RI0) -

∑
PI1∈PIntC1

PIBonus(PI1, C0) -∑
RI0∈RIntC0

RIBonus(C1, RI0) + QD(QC1 , QC0)

with:

PIBonus(PI1, C0) = 0 if ∃ PI0 ∈ PIntC0 that is comparable to PI1; else, a
value given by C0’s designer.

and:

RIBonus(C1, RI0) = 0 if ∃ RI1 ∈ RIntC1 that is comparable to RI0; else, a
value given by C0’s designer.

To measure the distance between the components, we take into account only
the lowest found distance for each PI0 and for each RI1. Candidate provided
(resp. substitutable required) interfaces without any comparable PI0 (resp. RI1)
are taken into account through a value given by C0’s designer.

4 Substitution in Practice

Now let us take the example of an application that requires a Digital Video
(”DV”) camera component, with an interface for video stream and another one
for camera control. It must also conform to the DV standard. This video camera
example is taken from [3].

4.1 Modeling an Ideal Component

The above requirements could be expressed by an ideal component called
videoCamera. The latter contains a provided interface videoStream (with an
operation outputV ideoF low), a provided interface cameraControl (with basic
operations such as on, record and eject2), and a required interface DV Format
(with an operation inputDV Flow that asks for a DV tape).

The needs are not just about functional part, but also about non-functional
properties and their respective importance. For example, we suppose that a high
level of reliability for record and eject operations is required (so that the camera
does not crash while recording, nor refuse to eject a video tape). We also assume
that a high image quality, such as a 1 million pixels (1 MPixels) screen resolution,
is required for videoStream interface. According to the quality model of Figure 2,
we use the following characteristics: reliability and imageQuality. Their re-
spective metrics are: MeanT imeToFailure (MTTF) and screenResolution.
Then we attach to the ideal component several NFSs. To each operation of
the cameraControl interface, we attach an NFS using reliability characteris-
tic (onReliability for on operation, recordReliability for record operation, and
2 For simplicity and brevity reasons, we limit this provided interface to only three

operations.

348 B. George, R. Fleurquin, and S. Sadou

Fig. 2. Example of quality model

Fig. 3. Example of ideal component: videoCamera

ejectReliability for eject operation). To videoStream interface, we attach the
NFS cameraResolution, using the characteristic imageQuality.

Finally, the designer fixes expected resultV alues, weights and penalties for
each NFS, and also fixes a maximal distance for the ideal component video-
Camera. On Figure 3, we see that the expected value for cameraResolution is
1 million pixels, and the expected values for NFSs using reliability characteristic
vary from operation to operation. The values required for recordReliability and
ejectReliability are higher than those for onReliability. The penalties attached
to cameraResolution, recordReliability and ejectReliability are very high in or-
der to enforce candidate components to contain these NFSs. cameraResolution
has a low comparison weight, which means that a big difference on the image
quality is not very important. However, recordReliability and ejectReliability

A Component-Oriented Substitution Model 349

have higher weights, which means that a big difference on the reliability measure-
ments of record and eject is very important. The maximal distance is fixed at a
low level, so that the lack of one of these three NFSs in a candidate component
will hardly be accepted.

4.2 Component Lifecycle and Substitution Cases

Now that our ideal component is modeled, we can look for the best concrete
candidate one to substitute it. Here are the different substitution cases:

First composition. Trying to plug a component into an application (in order
to satisfy a given need) means trying to make this concrete component substitute
the ideal one (corresponding to this need). Let us take the video camera example.
Now that we modeled an ideal camera component, we have to check which
concrete camera is the best candidate to substitute it.

First, according to our substitution model, a candidate must meet all the
functional requirements, i.e. it must have all the ideal component’s provided
services (interfaces and operations), and must not bring more required ones.
Otherwise, it will be rejected even if it has a higher quality. For example, let us
consider a V HSCamera component meeting all functional requirements, except
one (it requires VHS tapes instead of DV ones). No matter its quality, we need a
camera that requires only DV tapes, and this candidate adds a required interface,
so it is rejected.

Then, a candidate, like the fluidCamera component on Figure 4, may add
new NFSs unanticipated by the ideal component designer. For example video
flow’s number of frames per second. That corresponds to the metric FPS

Fig. 4. Example of rejected candidate: fluidCamera

350 B. George, R. Fleurquin, and S. Sadou

Fig. 5. Example of accepted: reliableCamera

(for Frames Per Second), which measures flowP erformance and flowQuality
characteristics (all of them are shown in Figure 2). It may be interesting to have
a new NFS using flowQuality characteristic on the outputV ideoF low opera-
tion, but the candidate (fluidCamera) lacks an important NFS. The penalty is
so high that it is rejected.

We can also have candidates providing at the same time some lower qualities,
and other higher ones, than ideal component. In this case, a candidate component
would rather have good ”scores” in the most important NFSs. For example, let
us take a candidate goodImageCamera which has an excellent image quality (2
million pixels instead of 1 million) and an average reliability (2.5 days instead
of 3 for operations record and eject), while candidate reliableCamera shown in
Figure 5 has an average image quality and an excellent reliability. We are not
directly comparing them to find which one is ”better” than the other. We are
comparing each one of them, separately, with the ideal component, in order to
find if it is an acceptable candidate. If we consider this ideal component, and
the distance obtained for each one of the candidates, we can say that both are
acceptable (distance with candidate goodImageCamera would equal to +15),
but the reliableCamera is the best one.

Maintenance. The application now has its camera component, but it could
have a ”better” one. If the needs are the same, the ideal component that models
them is exactly the same, but we can have new candidates. So we have to compare
each one of them to this ideal component, ignoring the previous candidate. If
the needs change, this implies that the ideal component changes too. Thus, we
must compare each candidate (including previous accepted one) with the new
ideal component. In both cases, we are back to the first composition schema.

A Component-Oriented Substitution Model 351

5 Related Work

We said in introduction that substitutability was a well-known problem in object-
oriented languages which include typing [5] and subtyping [13]. It is also an
industrial problem, as referred in [18], who asks how to make sure that changes
on a component won’t affect existing applications of a component, and try to
answer by setting rules based on subtyping. It was tempting for us to base on
subtyping too, in order to substitute components [16]. But we took critics of
typing [15] and subtyping [17] into account. Especially the one which said that
they were too rigid and too restrictive for componentware, and couldn’t deal
with context. This is why we preferred to try a more flexible approach.

Premysl Brada has explored the notions of deployment context and contextual
substitutability [4]. A deployment context of a component is a sub-component
that contains the used part of its services (provided and required services that
are bound to other components). So Brada’s contextual substitutability consists
in comparing a candidate component with this sub-component, rather than the
whole one. Although these notions seem close to ours, we work at a different
level. Brada’s approach consists in finding an ”architecture-aware” form of sub-
stitutability, his context concerns a concrete component, and depends on its
deployment in global architecture. Our approach is rather ”need-aware”, and
our context considers an ideal component (modeling a need) and a concrete one
which could substitute it.

As we said, our substitution model was inspired by Zaremski and Wing’s spec-
ification and signature matching for library components [20, 21]. Their matching
takes into account some substitution schemes that subtyping doesn’t include.
We were close to this approach, but we went further, by taking context and
non-functional properties into account, and applying our substitution rules on
generic component models. Beside Zaremski’s and Wing’s approach, there are
other notable works in software reuse and component retrieval [14]. For example,
our notion of weights can be compared to Scott Henninger’s tools [10]. These
tools parse a source code, extract ”components” from several keywords, then
put them into a library where a valued network between words and components
is created. So, when we search a word or a component in this library, a weight
is calculated for each component with the nodes’ values, and the selected candi-
date is the one which has the biggest weight. Our approach is at a different level,
because we search and select candidates, not from keywords, but from compo-
nents’ structure. It can be used in such retrieval mechanisms in order to refine
component search, and create more trustable libraries.

For our quality generic model, we were inspired by quality standards like ISO-
9126 [12] and metrics standards like IEEE-1061 [11]. Example of existing metrics
that could be used with our model can be found in [9, 19]. But the quality part
of our model can also be used with quality of service contracts languages (based
on Antoine Beugnard’s fourth level of component contracts [2]), such as the ones
modeled in QML [7] and QoSCL [6]. In particular, our concern about substitut-
ing non-functional properties can be compared to Jan Aagedal’s CQML language
[1], that deals with the substitutability of QoS ”profiles”. However, contrary to

352 B. George, R. Fleurquin, and S. Sadou

CQML, which, like most QoS languages, doesn’t take functional aspects into
account, our model combines functional and non-functional ones. And while
Aagedal separates primitive component substitutability and composite compo-
nent one, we deal with contextual substitutability of two components, no matter
their internal structure.

6 Conclusion and Future Work

We proposed a substitution model including several elements: i) a generic qual-
ity model, able to use existing quality metrics and QoS languages. ii) a generic
component model, able to use existing research and industrial approaches. iii) a
substitution distance, able measure the substitutability of a candidate compo-
nent. We also introduced the notion of ideal component, that models functional
and non-functional conceptual needs and takes composition context into account.

In our current framework, we chose to consider one component model us-
ing existing quality characteristics and metrics from one quality model. There
are two reasons for such a limitation : i) in the actual research and industrial
schemes, composition concerns mainly components that come from a same com-
ponent model; ii) the problem of comparing components from different models
is orthogonal to the substitution problem. Both can be treated separately.

Right now, we have a tool [8] that allows us to check if a component can
substitute another one according to our substitution distance measurement. This
tool aims to help designers to find the best candidates for their needs.

References

1. J. Aagedal. Quality of Service Support in Development of Distributed Systems.
PhD thesis, University of Oslo, 2001.

2. A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making components
contract aware. IEEE Computer, 32 (7), 1999.

3. G. Blair and J.-B. Stefani. Open Distributed Processing and Multimedia. Addison-
Wesley, 1997.

4. P. Brada. Specification-Based Component Substituability and Revision Identifica-
tion. PhD thesis, Charles University in Pragues, 2003.

5. L. Cardelli. Type systems. In A. B. Tucker, editor, The Computer Science and
Engineering Handbook, chapter 97. CRC Press, 2004.

6. O. Defour, J.-M. Jézéquel, and N. Plouzeau. Extra-functional contract support in
components. In Proceedings of 7th International Symposium on Component-Based
Software Engineering (CBSE 7), May 2004.

7. S. Frolund and J. Koistinen. Qml : A language for quality of service specification.
Technical report, Hewlett-Packard Laboratories, Palo Alto, California, USA, 1998.

8. B. George. Substitute tool. http://www-valoria.univ-ubs.fr/SE/Substitute/, 2006.
9. M. Goulao and F. B. e Abreu. Software components evaluation : an overview. In

CAPSI 2004, November 2004.
10. S. Henninger. Constructing effective software reuse repositories. In ACM TOSEM

1997, 1997.

A Component-Oriented Substitution Model 353

11. IEEE. IEEE Std. 1061-1998 : IEEE Standard for a Software Quality Metrics
Methodology, ieee computer society press edition, 1998.

12. ISO Int. Standards Organisation, Geneva, Switzerland. ISO/IEC 9126-1:2001 Soft-
ware Engineering - Product Quality - Part I : Quality model, 2001.

13. B. Liskov and J. Wing. A behavioral notion of subtyping. In ACM Transactions
on Programming Languages and Systems 1994, 1994.

14. D. Lucrédio, A. Prado, and E. S. D. Almeida. A survey on software components
search and retrieval. In EUROMICRO, 2004.

15. D. E. Perry and A. L. Wolf. Foundations for the study of software architecture.
ACM SIGSOFT Software Engineering Notes, 17 (4):40–52, October 1992.

16. J. C. Seco and L. Caires. A basic model for typed components. In ECOOP, 2000.
17. C. Szyperski. Component Software : Beyond Object-Oriented Programming.

Addison-Wesley / ACM Press, second edition, 2002.
18. R. Van Ommering. Software reuse in product populations. IEEE Transactions on

Software Engineering, 31 (7):537–550, july 2005.
19. H. Washizaki, H. Yamamoto, and Y. Fukazawa. A metrics suite for measuring

reusability of software components. In Metrics 2003, 2003.
20. A. Zaremski and J. Wing. Signature matching : a tool for using software libraries.

In ACM TOSEM 1995, 1995.
21. A. M. Zaremski and J. Wing. Specification matching of software components. In

ACM TOSEM 1997, 1997.

Building Reflective Mobile Middleware
Framework on Top of the OSGi Platform

Gábor Paller

Nokia Research Center, Köztelek str. 6, Budapest 1092, Hungary
gabor.paller@nokia.com

Abstract. The literature on mobile middleware is extensive. Numerous
aspects of the mobility’s effect on middleware have been analysed and
the amount of previous work allowed to identify the most important
patterns. Although the notion of “most important middleware” depends
on the application supported by the middleware, there are traits that
can be discovered in most of the connected mobile applications. Based
on the experience of several authors, these traits are context-awareness,
reflectivity, support for off-line operation and asynchronous (message-
based) communication.

This paper presents a mobile middleware system built to support
these patterns and demonstrates, how the OSGi service platform can
be used to realize these patterns. It will be demonstrated that although
OSGi was built to support manageability requirements, the resulting
platform is suitable for implementing the 4 major middleware patterns
too. The paper presents the components of this context-aware, reflective
middleware framework and evaluates its footprint.

1 Introduction

The literature about mobile middleware is extensive and goes back to about
10 years. Mobile middleware is normally categorized as nomadic and peer-to-
peer, the first being server-based with temporarily disconnected clients, the sec-
ond having no privileged node with constant, high-bandwidth availability at all.
There were several attempts to survey the entire middleware space (e.g. [1],[2])
and there seems to be a growing consensus that there are 4 major patterns
differentiating mobile middleware from the traditional middleware supporting
connected workstations. These patterns are the following.

Context-awareness. Traditional middleware is strictly layered meaning that
it shields the applications from events concerning the lower level of the stack.
Context-awareness means that there is no such shielding and the application
is aware of the environment situation. Context changes are inherently asyn-
chronous and are often delivered in the form of events. It is important to
note that only the application can decide what context events are important
and how to handle them. For example when a business application notices
that its cheap and fast proximity connection is no longer available, the ap-
plication can revert to using slower and more expensive cellular connection.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 354–367, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Building Reflective Mobile Middleware Framework 355

The same option may not be available for a game which is not allowed to
use more costly bearer and in case of disconnection, an error should be sent
to the end user or the application may switch to standalone mode.

Reflection. Reflection generally means that the program is able to make com-
putations on its own structure during its execution (retrieve the current
structure, evaluate the structure against environmental constraints then up-
date the structure if necessary). Reflection is a crucial technique in mobile
computing, especially, if the application is expected to be context-aware.
Even moderate number of context states can yield large number of context
state combinations. If the application and the middleware are built in mono-
lithic fashion, the application and middleware code must be prepared for all
possible context state combinations which quickly becomes intractable. Also,
the memory footprint of the monolithic middleware increases with each con-
text state combination handled. In order to keep the footprint minimal and
the design of the system clear, the middleware needs to be decomposed into
a collection of smaller components. The application chooses just the com-
ponents it needs and composes the middleware that serves the application
the best. In case of context changes, the application evaluates the context
transition and possibly changes the instantiated components and/or their
configuration.

Off-line access. Disconnection is an inherent property of mobile computing.
The reason for disconnection can be physical (no coverage) or social (mobile
access is too expensive or not acceptable in the given situation). In order
to provide acceptable user experience, operation in disconnected mode must
be available. The key technology to achieve disconnected operation is the
relocation of relevant data and code to the mobile device. Data relocation
can be achieved by pretty established data synchronization techniques.

Asynchronous communication. Networked computing is dominated by so-
lutions following Remote Procedure Call (RPC) semantics. RPC mimics the
procedure call on a single processor, the calling procedure is suspended for
the duration of the call and execution continues in the called procedure.
Therefore RPC is inherently synchronous. Mobile transport networks are
characterized by long and variable delays and frequent transmission errors.
In this environment communication must be asynchronous (event-based or
message-based terms are also used for the same concept). This affects the
communication semantics the middleware uses. Instead of procedure call se-
mantics, communication-related events are delivered to the application.

It is important to note that middleware patterns are in no way restricted to
the 4 patterns mentioned above. These 4 patterns, however, can be identified in
almost all connected mobile applications.

In this paper, it is presented how a middleware framework built on these
patterns can be implemented using the 4th release (R4) of the OSGi framework1.

1 http://www.osgi.org

356 G. Paller

2 Overview of OSGi R4

OSGi used to mean Open Service Gateway Interface but according to the current
position of its host organization, OSGi Alliance, OSGi is just a 4-letter technical
name. This is due to the fact that the original OSGi business model concentrat-
ing on household service gateways (e.g. pay-per-view TV set-top box) has been
extended significantly over the existence of OSGi and now includes application
platforms for vehicle systems and mobile devices.

OSGi is a Java-based interface specification between management-aware ap-
plications and the management platform itself. Key principle of OSGi is asyn-
chronous (”hot”) management which means that running applications must be
prepared to react immediately to management interactions. For example one
software component may be upgraded to a newer version and applications using
the component must be able to gracefully migrate from the old component to the
new one. This property makes OSGi a dynamic environment. Applications and
the platform are involved in extensive event communication and well-behaving
OSGi application uses these events to coordinate with the platform in case of
asynchronous management actions.

As of Release 4 (R4), the OSGi software stack has the following layers.

Security layer. This layer specifies how to sign OSGi artifacts. This layer
builds heavily on Java JAR signing and the bundle concept (see module
layer).

Module layer. This layer is responsible for the management of the installable
software modules called bundles in OSGi parlance. A bundle is a collection
of resources (Java class files and/or static files) and metadata that are added
or removed by one operation. Bundles can export and import Java packages
creating a dependency web among bundles.

Lifecycle layer. Bundles can be started and stopped, clearly demarcating the
operational and maintenance mode of the bundles. When a bundle is taken
into use, it is often started. This shows that the bundle can start exposing
its services (see service layer) or launch processing tasks associated with the
bundle. Before management of the bundle begins, the bundle is stopped.
At this point, the bundle should stop exposing its services and stop any
processing associated with the bundle.

Service layer. Services are key abstractions in OSGi. An OSGi service is much
reminescent to a component port: it is associated to a Java type (preferably
interface type) and has meta information attached to it. Services are regis-
trated in the service registry and the platform provides flexible ways to look
up services based on type or meta-information. The standard OSGi service
implementation is lightweight. Service providers instantiate an object imple-
menting the service interface type and register this object in the service reg-
istry. This object can be looked up and its methods can be invoked directly
over the service interface. In the simplest case there is no service invocation
overhead. The specification, however, does not prevent the implementation
of more complex service invocation schemes inter-process service or remote
service invocation.

Building Reflective Mobile Middleware Framework 357

OSGi specifies a wealth of standard services on top of the core framework,
most of them are optional.

3 Implementing Reflective Middleware with OSGi R4

Reflection is a vaguely defined term. One common definition of reflection is that
reflection allows the program to access, reason about and alter its own inter-
pretation [1]. In the problem domain of mobile middleware, reflection becomes
important if the mobile system is exposed to diverse and highly variable envi-
ronmental conditions - short-range wireless connections and location-dependency
are two, often identified areas causing environmental variability. Reflective ap-
proach means that the mobile system reacts to environmental changes by adapt-
ing its own program structure.

This adaptation can happen in many forms (e.g. dynamic aspects [23]). Due to
its predictability, the most commonly used approach is the dynamic component
system where dynamic refers to the ability to create and destroy components
and change the connections among them at run-time.

OSGi services have provided the kernel of dynamic components since the be-
ginning of OSGi’s existence. Services can be substituted for component ports
because they are typed, can be introspected and meta-information can be asso-
ciated to them. In addition, they are dynamic which allows for the creation of a
component that changes its port structure.

Prior to R4, multi-port components were not made explicit in OSGi, the
component semantics were hidden in bundle code. One significant addition in R4
is the Service Component Runtime (SCR). SCR allows for describing components
in declarative way. Bundles using SCR contain component descriptors. These
descriptors specify the services the component provides and consumes and SCR
connects the services automatically, based on the constraints in the descriptor
files. The constraint language is quite expressive and can take into account the
Java type associated to the port and the port meta-information. The component
may have properties and services registered as component ports will have the
same properties as the component does.

The consumed services can be dynamically bound. The component descriptor
defines, which service can satisfy the service reference and SCR looks for the
appropriate service if the previously bound service is unregistered. Components
became first-class entities in OSGi and have life-cycle of their own that is tied
to the life-cycle of the bundle containing the component. The component life-
cycle is manipulated by the SCR. Components are activated and deactivated
depending on their constraints.

Programmatic manipulation of the component network is also possible. It is
possible to programmatically enable and disable components. Disabled compo-
nents are ignored by SCR when it binds components therefore it is possible to
reconfigure the component network by enabling/disabling components. Addi-
tionally, it is possible to define component factories which allow programmatic
creation of components. Note that it is still the SCR that binds, activates and

358 G. Paller

deactivates components created by the component factories. Analysis of how
OSGi supports reflective requirements is provided below.

– The mobile application and middleware is able to discover its in-
ternal composition and recompose itself [10],[1]. SCR dynamically
recomposes components when the component relationships change. This can
happen due to enabling/disabling components, dynamically changing meta-
information of the services provided by the component or creating/disposing
components by means of component factories. When the component network
is recomposed by SCR, the component network may not be functional be-
cause all the necessary connections may not exist during the reconfiguration
phase. This creates ”blackout effect”; short period of time during which the
application is not available.

– It is possible to assign separate meta-spaces to applications [11].
Middleware and application components are created and wired in application-
specific way. For example one application would like to communicate only
over proximity connection (WLAN, Bluetooth, etc.) while the other appli-
cation running on the same platform may use any bearer, including e.g.
GPRS. One logically separate meta-space is populated with the components
belonging to one particular application (including application and middle-
ware components). OSGi’s support for meta-spaces will be discussed below.

– The integrity of the middleware and the applications using it is
preserved in spite of the reflection mechanisms. Recomposing the
system when it potentially serves requests is a complicated task and can
be solved only if the application logic supports the reflective system. SCR
supports static and dynamic binding. In case of static binding, the compo-
nent being reconfigured is deactivated and reactivated after the bindings are
updated. This creates a “blackout” in the component’s operation. In case of
dynamic binding the component is not deactivated when it is rebound and
it is the responsibility of the component logic to handle the problems that
may arise from dynamic reconnection and partially reconnected component
network.

Our framework extends the OSGi component model by only some usage con-
ventions. These are the following.

– Every component is generated by their component factories. This guarantees
that separate component instances are created for each application meta-
space.

– Every component is tagged by mwfw.app.id whose value is a string unique for
each application. Components with the same mwfw.app.id property belong
to the same meta-space. The filter expression of every component in the
application meta-space includes a match of the mwfw.app.id property. This
guarantees that components can be connected only to other components in
the same meta-space.

These conventions can function only in case of cooperating applications. Noth-
ing prevents a malicious or faulty application to create a component with

Building Reflective Mobile Middleware Framework 359

erroneous mwfw.app.id property disrupting the component network of another
application.

Analysing the requirements convinced us that OSGi R4 is suitable as a plat-
form to build reflective middleware with the following problematic areas identi-
fied.

– OSGi R4 component model is not hierarchical which may yield inacceptable
reconnection times in case of large component networks [3]. For example if
the component network supports hierarchical composition, entire parts of
the component network can be moved as one unit.

– Application separation which is a general concern in case of OSGi. SCR
adds to the problem because components generated dynamically by compo-
nent factories do not belong to any application. Therefore the limited OSGi
application separation mechanism offers no protection against erroneous ap-
plications that leak components and disrupt the component network of other
applications.

In the following sections I will present how the context, synchronization and
asynchronous communication subsystem can be built on top of the reflection
layer provided by the SCR.

4 Context Subsystem

Context-awareness is generally defined as the ability of the application to adapt
itself to changing environmental conditions. Context is defined formally in [5] as
the following: “context is the set of environmental states and settings that either
determines an application’s behavior or in which an application event occurs and
is interesting to the user”. One particular aspect of the environment affecting the
application is called context element and the set of all context elements is called
context. Some context elements are for example: location, end user-related infor-
mation (e.g. language), presence of available communication link (e.g. enterprise
WLAN access), etc. Obtaining and processing context information comprises
two steps.

– Obtaining environmental information from software or hardware sensors like
network cards, file system monitors, etc. These context elements are com-
monly called low-level context.

– Calculating high-level context elements suitable for applications. For exam-
ple the context element ”device from the same group nearby” can be gen-
erated from ”Bluetooth device in range” low-level context element if the
Bluetooth device is recognized as a device belonging to some application-
defined group.

Much more complex context systems have been described where devices pub-
lish their context interest using ontologies [7],[6].

The most common solution is to consume the context information in the
form of events. Calculating high-level context requires querying context elements.

360 G. Paller

Fig. 1. Context framework

A high-level context element is often calculated from low-level ones. This requires
that the state of the context elements can also be queried.

Considering the requirements above, the following context subsytem was de-
signed (see figure 1). Context elements are arranged into a tree. Context infor-
mation is made available to applications by two services: OSGi R4 Event Admin
distributes context events and Context Query Service (implemented as part of
our middleware framework) provides query access. Event Admin is a standard
publish-subscribe service in OSGi R4. Event Admin provides publication and
consumption of events in hierarchically named topics. Our framework adds only
the convention to Event Admin that context events are published under topics
whose root is mwfw/ (e.g. mwfw/network/status).

Context element sources can be probes (low-level context elements) and syn-
thesizers (high-level context elements) [4]. In both cases, context element source
publishes context events directly by Event Admin and registers context query
interface with Context Query Service (CQS). CQS really acts only as a switch-
board: when it receives a context query request, it finds the probe or synthesizer
responsible for the context element subtree and forwards the request to the ap-
propriate handler. OSGi favors the implementation of this structure with the
so called whiteboard pattern [24]. Upon registration of a context subtree query
interface, CQS is notified by the service registry which takes the newly regis-
tered subtree provider into use. The coding of this logic is greatly simplified by
SCR where CQS can declare its interest in context subtree services and provide
registration and unregistration callback methods.

One particular concern of context element providers is their potentially large
number. Our middleware framework allows probes to be disabled after instal-
lation and enabling them only if applications require them. SCR has a fea-
ture of disabling and enabling context providers from applications. The Context

Building Reflective Mobile Middleware Framework 361

Provider Management component (CQSManager) enables/disables context
providers based on their subtree. The implementation is more complex than one
would think because OSGi R4 SCR does not have centralized component direc-
tory. Enabling/disabling components is possible only for other components in the
same bundle. Therefore, each bundle containing context providers that can be
enabled/disabled must expose a directory component that is enabled by default
(ProviderList). This directory component has two functionalities: it provides a
list of all the context provider components in the bundle and it enables/disables
these context providers on behalf of the Context Provider Manager.

5 Synchronization Framework

Significant research happened in the area of file synchronization that can also
be extended to synchronization of other structured data items, e.g. database
tables [13],[14]. The literature analysis identified the following key requirements
regarding data synchronization.

– Although time-stamp-based synchronization is the most common technique,
the solution must be able to incorporate alternative sync engines. Partic-
ularly, full backup/restore (slow sync) and CPISync [9] were identified as
interesting candidates for more special scenarios.

– The solution must be able to incorporate multiple sync protocols like SyncML
DS [22], ActiveSync, etc. [8].

– It must be possible to use any network bearer for the synchronization. In
addition, it must be possible to change the bearer during a synchronization
session by first suspending the synchronization then resuming it on the new
bearer.

– The storage abstraction must be flexible enough to incorporate databases,
plain files and applications acting as data sources.

– Application must be able to provide their own conflict handling logic to
resolve synchronization conflicts.

– The synchronization system may hide the sync logic behind an object-
oriented front-end. This means that synchronizable data items are hidden
behind access objects [12].

The following component set was designed (see figure 2).

– The transport layer is abstracted by the protocol adapter component. This
is a simple component that is able to send packets to given URI (where URI
can identify any transport, not just HTTP) and receive packets.

– Synchronization protocol adapter components abstract the synchronization
protocol. Client version of this component is able to initiate synchronization
sessions, server version is able to handle an incoming synchronization session.

– Synchronization engine component abstracts the synchronization method
(e.g. bidirectional time stamp-based synchronization engine).

– Storage component abstracts the data storage to synchronize.

362 G. Paller

Fig. 2. Synchronization component network

6 Asynchronous Communication

RPC-based communication models don’t work well in mobile network due to
the high latency and unreliable nature of wireless bearers. Asynchronous com-
munication is a term used for a solution where the application hands over a data
packet to the middleware and continues executing. The application is notified
by events about arrival of data packets the application registered to. Applica-
tion programming in the asynchronous model is more complicated than in the
synchronous RPC-model but the volatile wireless bearers most often don’t allow
the luxury of RPC. As the programming model delivers invocations as events,
this model is also called message-based or event-based communication [18].

Asynchronous approaches can be divided into two categories: queues and tu-
ple spaces. Queues may use explicit addressing (when the sender specifies the
target along with the queue entry) or they may rely on the publish-subscribe
pattern [19],[20],[21]. Tuple space is a distributed hash table [15],[16],[17]. The
communication is achieved by placing key-value pairs in the hash table. Replica-
tion mechanisms ensure that local copies of the hash table get replicated to other
nodes. Tuple spaces and queues are close to each other, a queue fuctionality can
be implemented by using tuple spaces and vice versa. The first implementation
of our framework provides queue-based communication with explicit addressing
(figure 3 and 4).

– Protocol adapter is the same as in the synchronization solution. Typically the
queue and the synchronization component network use a separate instance
of protocol adapters but this depends on the protocol.

– Queue protocol adapter is the software component responsible for queue
item coding to and decoding from the packets sent to and received from the
protocol adapter.

Building Reflective Mobile Middleware Framework 363

Fig. 3. Sender queue network

Fig. 4. Receiver queue network

– Queue storage component is an extension of the synchronization storage
component. In addition to the interface required by the synchronization en-
gines, the queue storage component implements one additional interface for
queue management functions. These include placing an entry into the queue
and consuming an entry from the queue. The fact that queue storage compo-
nents are also synchronization storage components allows the queue to work
in synchronization mode as well when the queue storage component is linked
with a synchronization component network. This allows queues to work in
batch mode when the queue entries are updated by the synchronization en-
gine instead of the queue managers.

– There is a pair of queue managers, one for the sending queue and one for the
receiving queue. The sending queue manager scans the sending queue and
if there are queue entries, sends them over the queue protocol adapter to
the peer. The receiving queue manager scans the queue storage and delivers
queue entries as OSGi events by Event Admin.

Only explicitly addressed queues are supported by our framework. In order to
provide really comprehensive functionality, publish-subscribe mechanisms and
tuple space middleware should also be integrated into the framework.

364 G. Paller

7 Implementation and Results

Basic component set and a simple application was implemented. The component
set contains HTTP- and Bluetooth-based protocol adapters, SyncML DS syn-
chronization components, timestamp-based synchronization engine and queue
components for both the sender and receiver side. The application is a simple
contact manager that is able to work in networked mode as well. The contact
application can be paired with the same contact application on another device.
When the peer device is detected, the devices synchronize automatically. After
synchronization contact changes are exchanged immediately, using the queue
system as long as the devices have network connection to each other. The com-
munication patterns of this simple application can be identified in many real
world applications. Figure 5 presents the component set of the application.

The system is benchmarked in two setups, both using OSGi R4 reference im-
plementation (available from osgi.org). In the first setup two instances of the
same application are run on the same OSGi framework instance. The two in-
stances are run independently (both use their own component set) and commu-
nicate over local HTTP connection.

The uncompressed class file sizes are the following. MWFW framework core
+ interface classes: 55231 bytes. SyncML DS sync component implementation:
86857 bytes. Contacts application, PC setup: 71748 bytes. Note that parts of
the framework can be deployed separately and only the MWFW core bundle is
required. This allows component sets to be deployed incrementally, according to
application needs.

The first setup is executed on Linux 2.4.21 with standard JRE 1.4.2 08-b03.
The dynamic memory (RAM) footprint of the application, the middleware frame-
work and the OSGi framework is the following. Initiator after sync: 2567248

Fig. 5. Components in the sample application

Building Reflective Mobile Middleware Framework 365

bytes. Server after sync: 2691064 bytes. Initiator with disabled server compo-
nents: 2551312 bytes. The footprints were measured in the final phase of a suc-
cesful synchronization session. The sync initiator and server instances were run
in two JVMs and the footprint shown was obtained as the difference returned by
java.lang.Runtime totalMemory() and freeMemory() methods. It can be clearly
seen that even the OSGi Reference Implementation instantiates services lazily.
The initiator would have been able to function as server as well but as this
functionality was not used, the related service object were not instantiated. This
function can yield even more significant footprint reduction in more advanced
OSGi R4 implementations. Further footprint reductions can be achieved when
the server components are not instantiated at all in the initiator, as shown in
the table.

The second setup is executed on IBM’s J9 virtual machine preinstalled on
the Nokia 9500 Communicator. The purpose of this demo was to demonstrate
the suitability of the dynamic component-based approach for short-range wire-
less bearers. Unfortunately, the Personal Profile implementation in the the 9500
does not support JSR-82 (Bluetooth API) therefore the Bluetooth support was
implemented only as non-functional stubs. The footprint numbers presented
here are only informative therefore. The total static footprint was 11708791
bytes (total size of files installed on the phone including OSGi framework el-
ements, standard OSGi services, middleware framework and the demo appli-
cation). The RAM footprint was measured with the Spy application available
from forum.nokia.com. When the application’s launch process finished and the
application’s opening screen appeared, the J9 process occupied 5898 kBytes in
the phone’s RAM memory. These numbers are realistic for a device having 64
MBytes total RAM and 80 MBytes total flash disk space but may be problematic
to squeeze into a smaller device.

8 Conclusions

Reflective model is attractive in the mobile application space because of its
low footprint and easy adaptability to changes in the environment. This paper
aimed to demonstrate that the OSGi R4 component model can be efficiently used
to implement reflective middleware. OSGi R4 provides a powerful component
system which is made even more interesting by its dynamic component wiring
capabilities. Dynamic wiring, if not used carefully, may cause “blackout” in the
operation of the system. This blackout effect must be considered when designing
the application.

OSGi R4 as it is provides weak application separation that depends on class-
loaders in many implementations. There are many ways to exploit this protection
system and malicious applications are able to disrupt other applications. Our re-
flective middleware framework is built on component factories that complicate
the separation problem further because components created by component fac-
tories do not belong to applications. Therefore even the weak OSGi application
separation mechanism can be overridden. The framework presented here depends

366 G. Paller

on cooperative applications. Further study is needed on application separation
issues.

The value of the reflective approach was demonstrated by the footprint mea-
surements. It is definitely harder to develop, debug and test in the dynamic
component model supported by OSGi R4 than using the monolithic approach.
OSGi R4-based applications have realistic footprint for PDA-class devices and
smartphones.

References

1. C. Mascolo, L. Capra, W. Emmerich, Mobile Computing Middleware, NET-
WORKING 2002 Tutorials, pp. 20 - 58

2. A. Gaddah and T. Kunz, A Survey of Middleware Paradigms for Mobile Com-
puting, Carleton University, Systems and Computer Engineering, Technical Report
SCE-03-16, July 2003

3. G. Paller, Framework for Dynamic and Automatic Connectivity in Hierarchical
Component Environments, Fractal Workshop, Middleware2005 conference, Greno-
ble, France, 2005 Nov.

4. G. Chen and D. Kotz, Context Aggregation and Dissemination in Ubiquitous
Computing Systems Proceedings of the Fourth IEEE Workshop on Mobile Com-
puting Systems and Applications, 2002

5. G. Chen and D. Kotz, A Survey of Context-Aware Mobile Computing Research,
Technical Report: TR2000-381, Dartmouth College, Hanover, NH, USA, 2000

6. R. Power, D. Lewis, D. O’Sullivan, O. Conlan and V. Wade, A Context
Information Service using Ontology-Based Queries, First International Workshop
on Advanced Context Modelling, Reasoning And Management, UbiComp 2004

7. H. Chen, T. Finin and A. Joshi, An Ontology for Context-Aware Pervasive Com-
puting Environments Special Issue on Ontologies for Distributed Systems, Knowl-
edge Engineering Review, 2003.

8. S. Agarwal, D. Starobinski and A. Trachtenberg, On the Scalability of
Data Synchronization Protocols for PDAs and Mobile Devices, IEEE Network
(Special Issue on Scalability in Communication Networks), Vol. 16, No.4, pp.2228,
July/August 2002.

9. A. Trachtenberg, D. Starobinski and S. Agarwal, Fast PDA Synchroniza-
tion Using Characteristic Polynomial Interpolation, IEEE Infocom 2002

10. R. Hayton, A. Herbert and D. Donaldson, Flexinet: a flexible, component
oriented middleware system, Proceedings of the 8th ACM SIGOPS European Work-
shop: Support for Composing Distributed Applications, Sintra, Portugal, 7-10 Sep-
tember 1998.

11. G. S. Blair et al., Reflection, Self-Awareness and Self-Healing in OpenORB,
Proceedings of the first workshop on Self-healing systems, 2002

12. N. H. Cohen, A Java Framework for Mobile Data Synchronization, Cooperative
Information Systems: 7th International Conference, September 2000

13. M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel and
D. Steere Coda: A Highly Available File System for a Distributed Workstation
Environment, IEEE Transactions on Computers, 39(4), 447-459, 1990

14. M. Satyanarayanan, Mobile Information Access, IEEE Personal Communica-
tions, 3(1), 1996

Building Reflective Mobile Middleware Framework 367

15. G. Picco, A. Murphy and G. Roman, LIME: Linda meets mobility, International
Conference on Software Engineering archive, Proceedings of the 21st international
conference on Software engineering, 1999.

16. JavaSpaces specification, http://java.sun.com/products/jini/2.0/doc/specs/html/
js-spec.html

17. T. Lehman, S. McLaughry and P. Wyckoff, T Spaces: the next wave, IBM
Systems Journal, 37 (3): 454– 474, 1998.

18. Ren Meier, Communication Paradigms for Mobile Computing, ACM SIGMO-
BILE Mobile Computing and Communications, Volume 6, Issue 4, 2002

19. M. Caporuscio, A. Carzaniga, A. Wolf, Design and Evaluation of a Support
Service for Mobile, Wireless Publish/Subscribe Applications, IEEE Transactions
on Software Engineering, December 2003 (Vol. 29, No. 12)

20. B. Segall and D. Arnold, Elvin has left the building: A publish/subscribe no-
tification service with quenching, Proceedings AUUG97, Brisbane, Australia, Sep-
tember 1997.

21. Y. Chen, K. Schwan and D. Zhou, Opportunistic Channels: Mobility-aware
Event Delivery, Proceedings of the 4th ACM/IFIP/USENIX International Middle-
ware Conference (Middleware2003), June 2003.

22. SyncML Data Synchronization Specifications, Version 1.1, http://www. openmo-
bilealliance.org/tech/affiliates/syncml/syncmlindex.html

23. M. Pinto, L. Fuentes, M. E. Fayad and J. M. Troya, Separation of coordina-
tion in a dynamic aspect oriented framework, Proceedings of the 1st international
conference on Aspect-oriented software development, Enschede, The Netherlands,
April, 2002

24. Listeners Considered Harmful: The “Whiteboard” Pattern, Technical Whitepaper,
OSGi Alliance, http:// www.osgi.org/ documents/ osgi technology/ whiteboard.pdf

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 368 – 381, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Goal-Oriented Performance Analysis of
Reusable Software Components

Ronny Kolb1, Dharmalingam Ganesan1, Dirk Muthig1,
Masanori Kagino2, and Hideharu Teranishi2

1 Fraunhofer Institute for Experimental
Software Engineering (IESE)

Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
Tel .: +49 (0) 631 – 6800-2195

{kolb, ganesan, muthig}@iese.fraunhofer.de
2 Ricoh Company, Ltd.

1-15-5 Minami-Aoyama, 107-8544 Minatoku, Tokyo, Japan
hideharu.teranishi@nts.ricoh.co.jp

Abstract. To establish software reuse successfully in the long run, it is crucial
for providers of reusable components to continuously react on problems or
future trends arising around their component. In practice, however, many
providers of reusable components are not able to do so due to insufficient
feedback and details from reusers. Additionally, they often have too little
knowledge on system context and constraints that may lead to major deficits of
the reusable component especially with respect to non-functional aspects. This
paper presents an approach for systematically engineering performance of
reusable components that has been validated in an industrial context.

1 Introduction

With software reuse, organizations aim at improving efficiency of the development
process and quality of the developed products. Improving efficiency depends on
smaller cost for reusing an existing artifact than creating one newly from scratch. The
reuse process thereby encompasses the identification of reuse candidates, their
evaluation and selection, as well as their tailoring and adaptation to the specific
context and the final integration into the product developed [3].

Product line engineering is a strategic reuse approach aiming primarily at
efficiency improvements [1, 4]. It firstly minimizes the effort for the first part of the
reuse process by enabling a straight forward selection via a smart organization of the
reuse repository, that is, the product line infrastructure is strictly aligned with results
from scoping and domain analysis. Secondly, product line engineering optimally
supports tailoring of product line assets within the defined scope boundaries and thus
also minimizes the need for adaptations.

Some adaptations, however, are still necessary in many cases. Even if the adaptation
effort is small, it is hard to determine its effects on product quality. In practice, quality
assurance is thus typically performed by each project individually. Such an ap-
proach, however, negatively affects the efficiency of the overall organization. Hence

 Goal-Oriented Performance Analysis of Reusable Software Components 369

organizations try to engineer quality properties of artifacts in a reusable way as well
so that artifacts are adaptable also with respect to quality requirements of the reusing
context. In order to do so, however, it is necessary but rather difficult for teams that
maintain and evolve reusable artifacts to get a sufficient understanding of (potentially
future) reuse contexts and existing constraints.

On the one hand, it is difficult by nature because future scenarios cannot be
envisioned fully and in all detail in advance, as well as because most quality
requirements are system-wide requirements. System-wide requirements can only be
achieved by collaborations of sets of components according to rules defined by the
system architecture. Looking only at single components does typically not lead to
optimal system qualities. For example, assembling components that have been made
as fast as possible from local, system-independent viewpoints, does not necessarily
result in systems with optimal performance.

On the other hand, detailed information on former reuse contexts and usage
scenarios can be of great help to developers of reusable artifacts. In practice, however,
there generally is a lack of communication between reusers and providers of reusable
artifacts. Hence, providing technical mechanisms that automatically generate
information on the exact scenarios reusing components in the context of real products
may support goal-oriented improvements of reusable components also for future
contexts. This paper will thus present such a mechanism that focuses on performance
requirements which play a central role in determining the overall quality and usability
of many systems. Especially in embedded systems, performance problems are
observed after field release including system performance degradation or problems
handling required real-time constraints. The practical application of the approach is
illustrated using a case study in the context of an industrial system product line.

The remainder of this paper is structured as follows. Section 2 introduces the goal-
oriented approach for measuring and analyzing the performance of reusable software
components. In Section 3 then results and experiences of applying the approach to an
industrial product line component are presented. Section 4 closes the paper by
providing some final conclusions.

2 Approach

The analysis and measurement of performance in software systems in general has
been addressed by some researchers (e.g., [6], [7], [8], and [10]) and there are
numerous tools and methods available. Despite the importance and increasing interest
in industry, however, there has been very little research published in the area of
software performance measurement for reusable software components (e.g. in [5], [9],
[11],). Most research in component-based software engineering and product lines has
focused on the design and implementation of components and their functional aspects
so far, with relatively little reported on performance issues. Also, the fundamental
challenges for performance analysis in the context of embedded systems have not
been addressed adequately so far. Therefore, an approach is proposed in the following
to efficiently analyze the performance of reusable components in the context of
embedded systems. First, the basic ideas of the approach are presented. Then, an
overview of the underlying process is provided and the individual steps are discussed.

370 R. Kolb et al.

2.1 Basic Ideas

Major problems with current available methods and tools for measuring the
performance of components or systems are the large amount of generated data and the
overhead caused by unfocused and excessive instrumentation. Not only is it difficult
and time-consuming to analyze the amounts of data, but also often infeasible to
effectively analyze the data and to derive concrete suggestions for improvements.
Furthermore, the unreasonable instrumentation causes memory overhead and often
has a significant influence on the behavior that is generally not acceptable for
embedded systems. Also, resulting executables may be unsuitable for a production
environment due to the tremendous performance penalty incurred.

The basic ideas of the approach are therefore to perform a selected instrumentation,
to do performance measurement focused and on demand, and to base measurement
and instrumentation on clearly defined goals. Because of the latter, the approach is
called goal-oriented. As shown in Figure 1, the concrete measurement goal deter-
mines the necessary analyses which then determine the required measures. The
required measures finally determine the applied instrumentation technology. In order
to address specific characteristics of the component or system and to measure
different metrics, different instrumentation technologies are used. To limit the amount
of data generated, only a few key functions, classes, or parts are instrumented instead
of the complete component or system. The instrumented functions or classes are
identified based on the measurement goals. The rationale for this approach is that the
identification of useful and relevant measures reduces effort for analysis and
interpretation of collected data and hence a more reasonable usage of available
resources. Further, it reduces the overhead associated with instrumentation and hence
the influence on the behavior of the system.

2.2 Process

Figure 2 shows the process for measuring and analyzing the performance of a system
in general and a reusable component in particular. As the figure shows, the process
includes five steps. In general, the steps are executed in sequential order, starting with
“Plan” and finishing with “Improve”. It is, however, also possible to go from the step
“Analyze” back to the steps “Plan” or “Instrument” to adapt the measurements
according to the analysis results. In general, a performance measurement using the
process is performed in an iterative manner. In the following, the individual steps are
described in detail.

Plan. In this first step, the performance measurement and analysis of the component
or system is planned. In particular, the concrete measurements and analyses that
should be performed are defined, the instrumentation strategy is selected, and the

Measurement
Goal

Necessary
Analyses

Required
Measures

Instrumentation
Technology

Fig. 1. Principle of the approach

 Goal-Oriented Performance Analysis of Reusable Software Components 371

team and infrastructure for performing the measurement and analysis are set up. The
step is typically performed by a project manager or developer responsible for
performance measurement. It is started once performance problems have been
encountered or information about performance issues requested. The step consists of
the following activities: 1) Set Measurement Goals, 2) Plan Analyses, 3) Determine
Measurements, 4) Define Instrumentation Strategy, and 5) Prepare Team and
Infrastructure. As the approach is goal-oriented, the first activity is to define together
with stakeholders the goals of the performance measurement. Examples of
stakeholders are component users, customers, marketing, designers, and developers.
The goals are preferably defined using the Goal-Question-Metric (GQM) approach1 1.
At the beginning, high-level measurement goals are stated which are then transformed
into formal GQM goals. If there is more than one goal, a limited number of goals
which finally have to be achieved by the planned performance measurement are
selected. According to the defined measurement goals, the analyses that should be
performed on the data collected during execution of the component or system are
defined. The analyses help to find the reason of problems and provide the input for
improvement activities. Based on the measurement goals and the planned analyses,
then measurements are defined. Measurements define the type of data that should be
collected and how often the data is collected. Examples of measurements are response
time for functions in milliseconds, number of function calls, latency, and throughput.
According to the defined analyses and measurements, an instrumentation strategy is
defined next. An instrumentation strategy specifies:

• which instrumentation technology will be used,
• how the instrumentation technology will be customized to the concrete context,
• which parts (e.g. subcomponents, collection of classes) of the investigated compo-

nent or system should be instrumented,

1 GQM is a method for performing goal-oriented software measurement and defining

measurable goals. Abstract high level goals are refined into questions and these questions are
further refined into metrics which help to answer the questions in a measurable way.

Plan

Instrument

Run

Analyze

Improve

Fig. 2. Process for performance analysis

372 R. Kolb et al.

• what constructs should be instrumented (e.g., statements, functions, methods,
classes, external components), and

• when the component will be instrumented (e.g., preprocessor, compile-time, link-
time, run-time)

The selection of an instrumentation technology not only depends on the planned
measurements and analyses, but also on constraints such as the availability of source
code, personnel skills, and costs. The technology of choice can also depend on the
hardware features and instrumentation tools available. For example, some methods
require special hardware features like a digital output port, while other techniques
require a specific software application or measurement instrumentation to be
available. In some cases, the required hardware or tools can be quite expensive and
the cost and lack of availability can prevent using a particular method. Once the
instrumentation technology has been selected, the parts for instrumentation are
determined. The decision of what should be instrumented can be supported by a static
analysis of the source code or by expert feedback. Experts are particularly used to
identify certain key locations inside the component or system for instrumentation. The
last activity in the planning step is the preparation of the measurement infrastructure
and the set up of a team performing the measurement and analysis. The team size
depends on the complexity of the analyzed component or system, the instrumentation
strategy, and the planned analyses.

Instrument. In this step, the investigated component or system is instrumented
according to the previously defined instrumentation strategy. The step is typically
performed by person(s) having detailed knowledge about the selected instrumentation
technology. A developer of the component supports this step by providing detailed
knowledge about the internal structure of the component as well as the domain. The
instrumentation also includes checking the correctness of the measurement code and
the correct behavior of the modified component. After the step, the component or
system is ready to run and can be integrated and used.

A common way to measure performance is to automatically or manually insert
measuring code into the source code of the investigated component or system. This
provides the ability to capture the metrics of interest, and the analyst has the
possibility of taking the measurements in the most appropriate places. A problem of
manual instrumentation, however, is that for all but trivial systems, it is very labor-
intensive and in consequence often time-consuming and costly. In the case of
component-based systems, furthermore, the source code of a component might not
always be available. Whether instrumentation is done manually or automatically, a
sound understanding of the design and implementation of the system is required to
ensure that all appropriate measurement sites are instrumented, and that no bugs are
introduced. Besides code level, instrumentation can also be performed as part of
compilation or directly on the executable either before or during execution. The
problem, however, is that there are generally differences between development and
production environment of embedded systems. Different compilers and tools as well
as different hardware platforms make it difficult to analyze and compare measurement
data and to draw conclusions.

 Goal-Oriented Performance Analysis of Reusable Software Components 373

Run. The instrumented component or system is executed in the same way as the
original version. Depending on the planned analyses, the component is executed one
or more times using clearly defined usage scenarios. Depending on the nature of the
component or system, another component or a user interacts with the component or
product according to defined scenarios. During each of the executions, the previously
injected code collects measurement data that is either persistently stored directly or at
the end of the run. The executions of the component or system lie mainly in the
responsibility of the product developers, component users or customers. In case of
problems with the instrumented code or the measurement data collection, they are
assisted by the instrumentor.

Analyze. After the instrumented component or system has been executed and all the
measurement data collected a post-mortem analysis with respect to the measurement
goals and with the goal of giving detailed interpretations of the collected data is
performed. The analysis is performed by one or more specialists in data analysis. As a
first step, the collected data is assessed for reasonableness and correctness. If any
problems regarding the validity of the data are found, the reason has to be determined.
Depending on the identified reason, either the planning or the instrumentation has to
be revisited and performed again resulting in new measurement data. Once the
validity of the collected has been confirmed, the initially planned analyses are
conducted. The results are interpreted to identify and understand problems in the
investigated component or system. Based on the analysis results, preliminary
conclusions and improvement suggestions are derived. If it is necessary, for example
to gain confidence in the results or to draw sound conclusions, additional
measurement and analyses passes are conducted. This might also include improving
measurement definitions, data collection procedures, and analysis techniques as
needed to ensure meaningful results that support measurement goals. To prevent
misunderstandings of the analysis results and rework, initial and final results should
be reviewed with all relevant stakeholders. Once the final analysis results are
available, relevant stakeholders should be assisted in understanding and interpreting
the results.

Improve. In this final step, the analysis results are used by the developers to perform
improvements and to remove agreed upon defects and detected bottlenecks. After all
the problems have been removed, typically the previous performance measurement is
performed again to check whether all problems have been resolved. If this
measurement shows no further problems, the process is finished. Otherwise, a new
performance measurement with different goals and analyses is planned and
conducted.

3 Case Study

This section illustrates the practical usage of the goal-oriented performance
measurement process by means of a case study. After giving an overview of the
context of the case study, the section provides some results of the component’s
performance measurement and summarizes experiences and lessons learned in
applying the proposed approach.

374 R. Kolb et al.

3.1 Context

The case study presented in this paper is based on a reusable software component
called User Interface Component (UIC) which is used in Ricoh’s current products of
office appliances. Ricoh is one of the world’s leading developer and producer of
digital office equipment, including copiers, printers, scanners, facsimiles, and
multifunctional peripherals (MFPs). All these products are embedded systems with
limited hardware resources and increasingly complex software as most innovative
features are realized by software nowadays. Because of the very large number of
similar products and the need to reduce development and maintenance costs, Ricoh is
interested in applying Fraunhofer PuLSE™ (Product Line Software and System
Engineering)2 to systematically tackle variability and reusability issues. In this
context, the issue of systematically measuring and improving performance of reusable
software components was addressed.

As one of the most important parts in an office device is the user interface and
already a reusable component with performance problems was available, the user
interface component was selected for the case study. In the following, a brief
overview of the component is provided.

UIC

AUI

UiTk

Panel

Application

OCS SCS

Panel Hook

Fig. 3. Overview of the UIC

The user interface component is a reusable component that provides features for
easily realizing the graphical user interfaces of Ricoh‘s products. It is used by the
developers of concrete products to build the user interfaces that provide access to the
various functions of the different products. The component abstracts from the
underlying hardware and capabilities of the various input and output devices used in
Ricoh’s products. Currently, the component supports four-line LCD, VGA and
WVGA output panels with function keys and touch screens as input devices. Potential
variabilities had been analyzed and considered in design and implementation in
advance. The component is realized as a C++ framework with hook methods for
variabilities. In total, it consists of about 100,000 lines of code.

2 PuLSE™ is a registered trademark of Fraunhofer Institute for Experimental Software

Engineering (IESE), Kaiserslautern, Germany.

 Goal-Oriented Performance Analysis of Reusable Software Components 375

To realize the required functionality, the component uses other components,
namely OCS and SCS, as shown in Figure 3. These components have been developed
by different units so that their source code is not available. Internally, the user
interface component is structured into three layers. The top-most layer, called AUI, is
responsible for the connection between an application and its data to the component.
The UiTk layer realizes the display and control of various widgets on a panel. The
panel layer at the bottom is responsible for controlling the underlying hardware by
using the device drivers controlled by OCS and SCS. The adaptation to the different
input and output devices is realized in the so called panel hook. For every new device,
a specific implementation of the panel hook has to be provided.

The user interface component is developed iteratively. To effectively test the
different variants of the component, an emulation environment was created to perform
automatic tests and simulation of various input and output devices. Component
developers can thus create user interfaces and simulate the usage of their component
by products. These activities focused on assuring correct functioning of the
component. Non-functional aspects such as time behavior and resource consumption
were not addressed. After successful testing, the component is released to
development units reusing the component for building products.

Product development thereby includes activities assuring quality of the whole
product, such as black-box testing that uncovered occasionally that some user
interface requests, such as a transition from one screen to another, had an unusual
long (e.g. several seconds) response time. Naturally, product teams conjectured that
problems regarding the low performance might be caused by the user interface
component. Since the problems did not show up in the emulation environment,
however, the component development team refused to take responsibility for the low
performance and conjectured that the problems might be caused by the external
components used by UIC. To resolve this issue, performance properties of the
reusable component must be analyzed in detail.

3.2 Activities

This section discusses some of the activities performed in the case study according to
the individual steps of the goal-oriented performance measurement approach.

Define Instrumentation Strategy. According to the defined analyses and measure-
ments and taking into account project constraints an instrumentation strategy was then
defined. Because of the usage of C++ as programming language and the availability
of source code of the user interface component it was decided to selected automatic
source code instrumentation. As the source code of the external components was not
available for any modifications, instrumentation was done at call sites in the UIC.
Instrumentation was limited to calls to external functions provided by OCS and SCS
in the panel hook of the component. Note that the panel hook is adapted to the
different hardware devices supported by a product. Therefore, the panel hook of the
emulation is slightly different than the product version. The external functions
acquired by UIC and the call sites have been identified using static code analysis. In
total, 16 functions provided by the components OCS and SCS have been identified to
be used by the UIC.

376 R. Kolb et al.

Instrument. According to the defined instrumentation strategy the source code of the
user interface component was automatically instrumented by the Fraunhofer IESE
using custom tools. At all the sites in the code with calls to functions provided by the
external components OCS and SCS, additional code to collect and store timing
information was automatically inserted before and after a function call. For recording
the start and end time of a function and also to relate the time to a particular function,
an instrumentation library developed by Fraunhofer IESE has been used. The library
provides a number of simple macros such as PERMEAS_FUNC_START and
PERMEAS_FUNC_END for storing events, time stamp, and name of an entity in a
very compact log file. To keep the overhead of the measurement code to a minimum,
the library does not compute the duration of functions or methods nor increments a
counter for the respective function. However, it enables to customize the data storage
mechanisms to the particular context. In case of the emulation environment, the
measurement data was written directly to a file on the hard disk whereas in case of the
product environment a special hardware mechanism provided by Ricoh was used to
efficiently store and transmit the data. The mechanism enables to store data without
much overhead and even if there is no persistent memory in the product available.

In addition to the automatic instrumentation, some minor manual instrumentation
of specific aspects was done by Fraunhofer IESE and Ricoh. For example, the code
was adapted manually to collect start and ending time of test scenarios in the auto test
environment. Also, the Ricoh developers did some instrumentation for certain
component-internal methods they wanted to include the measurement.

Run. The instrumented component was integrated with other components and then
executed in the emulation environment and in two concrete products. To have
comparable measurement results, two specific usage scenarios have been defined and
used for interaction with the user interfaces realized using the component. In case of
the emulation environment, the automatic test capabilities have been used to easily
and repeatable stimulate the component according to the test scenarios. In the product
environment, the stimulation was done manually by pressing respective keys and
buttons.

Analyze. Once the measurement data had been collected by running the component in
the emulation environment and in a concrete product, a post-mortem analysis of the
data was started. As a first step, the measurement data stored in the log files was
preprocessed in order to have a better basis for the analyses. In particular, the duration
of function calls was calculated from the start and ending time stored for each
function in the log file using a small Java program. The preprocessing resulted in
comma separated values (CSV) files containing the function name and the duration of
the function in milliseconds. After preprocessing, the files have been imported to
Excel for performing the pre-planned analyses. Examples of the performed analyses
and their results are provided in Section 3.3.

Because of the analysis results which indicated that the performance problems are
not caused by the external functions but internal methods of the user interface
component, a further cycle plan, instrument, run, analyze was done after performing
the originally planned analyses. In particular, the measurement goal was extended to
finding internal methods of the user interface component that cause the identified
performance problems.

 Goal-Oriented Performance Analysis of Reusable Software Components 377

3.3 Results

In this section, some results of the measurement of the user interface component in
the emulation environment and two concrete products are summarized. Note that due
to confidentiality reasons all the names of functions have been anonymized and there
is also no information about the actual response time of functions.

As shown in Figure 4, the percentage of calls to external functions in the emulation
and product environments are relatively similar. In particular, the results for the
different products show only minor differences. The results also showed that some
functions are never called or are only executed in one of the environments.

Even though the distribution of the function calls is comparable in the emulation
and product environments, there are significant differences regarding the total time
spent in the individual functions as shown in Figure 5. Whereas in the product most of
the time is spent in function f3 for both usage scenarios, more than 90% of the total
time is spent in function f7 in the emulation environment. As more detailed analyses
have shown this is caused by large differences between the response times of the
functions in the emulation and product environment. For function f7, for example,
the average response time is 87% higher in the emulation environment than in the
product even though the emulation is running on a much faster processor. As with
knowledge about the different hardware platforms this result was very surprising, an
effort investigating the cause was initiated. It eventually showed that in the emulation
environment much overhead is caused by the way the emulations of the external
components OCS and SCS are technically realized. A major influencing factor was
the fact that both OCS and SCS are realized as dynamic link libraries which are
dynamically loaded whenever a provided function is requested.

Fig. 4. Percentage of function calls

378 R. Kolb et al.

In the product environments and the emulation environment function f3 is called
very often. However, in the emulation environment it has very short response time
resulting in very small percentage of the total time. Conversely, in the product
environment the percentage of time is proportional to the percentage of calls for this
and many other functions.

Figure 6 shows the ratio of time spent in functions provided by OCS and SCS (i.e.,
External functions) in comparison to the percentage of time spent in the user interface
component itself. As can be seen the component spends in the emulation
environment, on average 54% of the total time in functions provided by OCS and
SCS. This result lead to the preliminary conclusion that the performance problems
with the user interface component are indeed caused by the external components. In
the concrete products, however, only 2% and 11% of the time is spent in external
functions. Analogous, in the product environment up to 98 percent of the total time of
a usage scenario is spent exclusively inside UIC. Hence, the results strongly indicated
that the performance problems of the UI component are not caused by external
components but by the UI component itself. The detailed analysis showed that most
of this time is spent in just three methods. Furthermore, only minor differences
regarding the performance of the component variants reused in the investigated
products have been observed. In order to significantly improve the performance of the
component, therefore, only the three identified methods have to be modified without
compromising the performance of the products reusing the component.

The major problem identified by the performance measurement is the significantly
different behavior of the emulation environment in terms of performance. Especially
the emulation of the external components OCS and SCS does not resemble the
behavior of the original components. Therefore, the current emulation environment
can be used for testing functional correctness of the user interface component, but not

Fig. 5. Percentage of time spent in external functions

 Goal-Oriented Performance Analysis of Reusable Software Components 379

to realistically predict the performance in the product environments. By adapting the
time behavior of the emulation components to that of the original components used in
the products an early detection and resolution of performance problems in the UIC
would be possible. Without waiting for feedback from the product teams,
performance bottlenecks could be detected and the performance of the component in a
particular product demonstrated to interested product teams. This also would result in
a higher level of confidence in the quality of the component by product teams thus
increasing the willingness to reuse the component.

3.4 Lessons Learned

This section summarizes some experiences and lessons learned in applying the
performance measurement approach to a reusable software component. It also
presents some limitations and discusses the main points that should be considered
when planning and performing a performance measurement.

In general, the presented approach enabled to efficiently and effectively measure
and analyze the performance of a reusable software component. Due to the goal-
orientation and the selective instrumentation the amount of data that had to be
analyzed was reduced significantly without reducing the quality of the analysis
results. Furthermore, the influence of the measurement code on the behavior was kept
to a minimum and there was no visible performance degradation observed. The key to
success, however, was to identify the right (i.e., most promising) places in the
component to add measurement code, to use the same – or at least very similar –
usage scenarios for collecting measurement data. Also, the adaptation of the code
collecting and storing the measurement data to the different environments was crucial.
Furthermore, the iterative approach and the adaptation of measurement goals and
planned analyses after having analyzed the collected measurement data enables to
improve the quality of the analyses and to achieve the required goals in shorter time.

Despite its success, the case study showed that there are still possibilities for
improvement. First of all, most of the analyses have been done manually, making
them time-consuming, tedious, and cumbersome to do. At least for some default
analyses, therefore, automation would be an important issue. Another problem is the

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

Emulation Product 1 Product 2

UIC Methods
External Functions

Fig. 6. Percentage of spent times

380 R. Kolb et al.

selection of appropriate analyses for the defined measurement goal. In the case study,
the selection was done intuitively based on prior experiences. To make the process
more explicit and to also enable developers with little or no knowledge and
experience in performance measurement to effectively analyze the performance of a
component, however, a well-defined process and information about possible analyses
is required. Ideally, developers are provided with a catalog of standard analyses that
describes for each analysis the purpose, the context to which it applies, the
prerequisites, the required measures, and the process of performing the analysis.
Similarly, an overview of available measurement and instrumentation technologies
together with prerequisites for application and known benefits and drawbacks would
support inexperienced developers.

Another important issue that has to be addressed is ensuring the correctness of the
collected measurement data. This is especially challenging in the case of multi-
threaded systems and asynchronous function calls which are typical for embedded
systems. For asynchronous functions the simple approach of measuring the time
before and after a function call does not work as the function usually just sends a
message to another thread and then immediately returns resulting in very short
execution times. The actual execution time of the functions, however, is much longer
and needs also measurement of the function responding to the message in another
thread. As the user interface component and the used external components, however,
are all single threaded and asynchronous functions are not used, the problem has not
been addressed so far.

Finally, the selection of appropriate usage scenarios requires domain knowledge
and determines the reliability of the measurement results for all instances of a
reusable component. To make detailed recommendations for improvement domain
knowledge and knowledge about the internal structure of the component is necessary.
It is also important to analyze the impact of any change to the component on the
different products.

4 Conclusions

This paper motivated that establishing successful reuse of components requires also
their careful engineering of relevant quality properties in a reusable way. It in
particular has addressed the problem of measuring and analyzing performance of
reusable components by a goal-oriented measurement approach, whose practical
applicability was validated in an industrial context.

In contrast to existing approaches, the presented technique focuses on well-scoped
usage scenarios and qualities so that much less data must be collected and enables
therefore a selective instrumentation that minimizes side effects of measurement code
on the behavior of the system. Additionally, analyses must process less data. As
shown in the case study, the approach uncovers problem areas and thus enables
significant improvements without much overhead or large effort.

In the future, we want to apply the presented approach to other components,
quality attributes, as well as environments.

 Goal-Oriented Performance Analysis of Reusable Software Components 381

Acknowledgements

This work could not have been carried out without the cooperation and assistance of
the developers of both the Ricoh UIC team as well as the product team using the
component who applied the approach and delivered the essential measurement results.
In particular, we would like to thank Mr. Matsui and Mr. Hatakeyama for their
support in integrating the instrumented component and collecting the measurement
data. Finally, we would like to thank the management of Ricoh Ltd., Tokyo for their
permission to publish the results.

References

1. Atkinson, C. et al. Component-based Product Line Engineering with UML. Addison-
Wesley, 2001.

2. Basili, V. R., Caldera, G., and Rombach, H. D. Goal Question Metric Paradigm, In J. J.
Marciniak (ed.) Encyclopedia of Software Engineering (vol. 1), John Wiley & Sons, 1994,
528–532.

3. Basili, V. R. and Rombach, D. Support for Comprehensive Reuse. IEEE Software
Engineering Journal, Volume 6, Number 5, 1991.

4. Clements, P., and Northrop, L. M. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2001.

5. Ganesan, D., Maurer, U., Ochs, M., Snoek, B., Verlage, M. Towards Testing Response
Time of Instances of a Web-based Product Line. In Proceedings of International Workshop
on Software Product Line Testing (SPLiT 2005), Rennes, France, September 2005, 23–34.

6. Metz, E., Lencevicius, R. Efficient Instrumentation for Performance Profiling. In
Proceedings of the First Workshop on Dynamic Analysis (WODA), 2003, 143–148.

7. Metz, E., Lencevicius, R. A Performance Analysis Tool for Nokia Mobile Phone Software.
In M. Ronsse, K. De Bosschere (eds.), Proceedings of the Fifth International Workshop on
Automated Debugging (AADEBUG 2003), September 2003.

8. Reiss, S., Renieris, M. Encoding Program Executions, In Proceedings of the International
Conference on Software Engineering (ICSE), 2001.

9. Sitaraman, M. Kulczycki, G., Krone, J., Ogden, W., Reddy, A. Performance Specification
of Software Components. In Proceedings of ACM SIGSOFT Symposium on Software
Reuse (SSR ’01), ACM/SIGSOFT, May 2001, 3–10.

10. Stewart, D. Measuring Execution Time and Real-Time Performance”, Embedded Systems
Conference (ESC’01), Spring 2001.

11. Yacoub, S. Performance Analysis of Component-Based Applications. In Proceedings of
the Second Software Product Line Conference (SPLC2), San Diego, CA, August 2002,
299–315.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 382 – 385, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Establishing Extra Organizational Reuse Capabilities

Markus Voss

sd&m Research
sd&m AG software design & management

Berliner Str. 76, 63065 Offenbach, Germany
markus.voss@sdm-research.de

Abstract. Component-based software engineering (CBSE) for companies ac-
tive in custom solutions development is far from being reality. To make pro-
gress more industrial research as well as accordant technology management is
needed. In this contribution we introduce a classification of components in
terms of component’s scale and in terms of functional vs. technical concerns.
From this basis we argue that only some areas of software reuse promise sub-
stantial growth in delivery efficiency and show how this is related to the extra
organizational reuse approach.

1 Introduction

The idea of component-based software engineering has long been discussed and many
contributions to the topic have been made (e.g. [1]). Industrial practice shows how-
ever, that the ultimate promise of plugging given components together to new systems
is far from being established. Available component technologies like CORBA CCM,
(Enterprise) Java Beans or Web Services are essential as a technological basis. The
challenge however for software systems architects today is to be able to really lever-
age the power of reusing not only technical but functional elements to significantly
improve productivity.

2 Component Classification

One dimension we need to address when talking about components and their specifi-
cation and potential reuse is scale. Components exist from small to large and all of
them need to be taken into consideration when talking about CBSE.

Whole application landscapes consist of many applications, possibly ordered in
application domains (subject matter domains; one driving concept in service-oriented
architecture partitioning as we e.g. pointed out in [2]). Applications themselves are
comprised from application components. Application components are characterized
by being elements exporting use cases and are themselves internally assembled from
software objects.

The second dimension to consider is whether a component really makes a func-
tional contribution (e.g. an application component to the application) or whether it

 Establishing Extra Organizational Reuse Capabilities 383

makes a pure technical contribution and serves as an infrastructural basis. The former
we call A-components, the later T-components.

The separation into A- and T-components is an established concept for structuring
software systems [3] - an application of the concept of separation of concerns. T-
components are organized in layers (presentation & integration services, business
services, data services (persistence)). These layers form reference T-architectures,
matching the layers of A-components and tying them together on the according levels
of integration. Fig. 1 illustrates this concept.

Fig. 1. T- and A-components working together

Examples for T-components on the small scale are e.g. Toplink (commercial) or
Hibernate (Open Source) implementing data services or the Spring framework im-
plementing business services. The aggregation of A-components and T-components
on this small scale is called an application. An application is characterized by a spe-
cial set of functionality given by the set of the use cases supported by its A-
component plus a technologically homogeneous set of T-components.

Moving up the hierarchy to mega-applications, application domains or application
landscapes where whole applications become A-components usually leads to hetero-
geneity in the T-components and redundancy in the A-components’ (the applica-
tions’) functionality. Therefore, the core of integrating applications – no matter
whether they are custom build or off the shelf – is always based on functional and
technical transformation. The corresponding T-components on a large scale are e.g.
portal management, EAI solutions or data integration products.

384 M. Voss

3 Investigating the Areas of Reuse

3.1 Reuse of T-Components

Reuse of T-components - on the small as well as on the large scale - being mainly a
matter of standardization is simply a prerequisite for any raise of productivity, effi-
ciency and cost reduction in any multi-project software systems development organi-
zation. Therefore it’s worth strong effort both in industrial research as well as in
accordant technology management to establish this form of reuse.

Experience shows that intra organizational approaches in T-components reuse
tend to be inefficient in terms of their ratio of cost and benefit and also tends to be
overrun by extra organizational progress – both commercial and open source. There-
fore an extra organizational reuse approach is to be preferred as a sustainable basis.
T-components originating from inside the organization should very critically be
judged according to its sustainability. Being able to form an open source community
for the components advancement may e.g. very well be a meaningful measure.

Organizing the reuse of T-components within a company starts with establishing a
framework in terms of reference T-architectures, which serve as maps for positioning
the components on. Since research in software architecture only rarely is driven by
this pragmatic industrial need, we propose reference T-architectures to be a primary
focus of industrial research. Reference T-architectures make sense for structuring
T-components on the small scale as well as on the large scale. They highlight central
architectural clusters of technical services needed. Each technical service can be in-
stantiated by one or more T-components – may they be commercial, open source or
(in an exceptional case) of inter organizational origin. In [4] we go into more detail on
reference architectures.

It’s the responsibility of industrial research to standardize appropriate reference
T-architectures. A company’s accordant technology management’s responsibility than
is to organize an ongoing maintenance of a short list of strategic T-components (e.g.
high potentials, customers’ favorites) plus technical and organizational support for
reusing complete proven configurations. This comprises e.g. the supply of best-
practices documentation, starter kits, architectural glue code, configuration manage-
ment procedures, light-weight support structures etc. The result is an increase in
standardization and thus in delivery efficiency.

3.2 Reuse of A-Components

Reuse of A-components on the small scale is known to be extremely difficult. The
reason for this is not the lack of theoretical grounding but lies within the exact fit
requirement in combination with the bad ratio of cost and benefit of designing and
organizing for reuse on the small scale.

From the perspective of developing a CBSE strategy we hence propose to focus
industrial research not on reuse issues but on fostering standardization of the specifi-
cation of A-components. The aspiration is to come up with a more efficient basis for
the development of exact fit components. In conjunction with the standardization of
their architectural framework to be plugged in, in terms of the standardization of
T-components as mentioned above, highest gain in efficiency and cost optimization

 Establishing Extra Organizational Reuse Capabilities 385

then is expected to come from intelligent distribution of the development work (“right
shoring”).

But progress in A-components specification also starts with an appropriate archi-
tectural approach. E.g. it has proved to be essential for a minimization of internal
coupling and thus for efficient distribution of development of an application compo-
nent to internally separate the business function from the channels of access to it.
Having separated distinct sub-components on this note, many cuts through an applica-
tion become possible. This results in being able to distribute development tasks
optimally in terms of the participating development unit’s special skills. The other
important consequence is that it becomes clear how the interfaces look in general and
individual component specification work becomes highly standardized. Since again
research in software architecture only rarely is driven by this pragmatic industrial
need, we propose this to be a major focus for industrial research.

Reuse of A-components on the large scale on the other hand is obligatory since the
ratio of cost and benefit has good potential. Handling of functional redundancy and
technical heterogeneity can very well pay of if integration and customizing of the
components does not exceed reasonable limits.

Recent trends in further componentizing of large business software as e.g. in
SAP’s ESA strategy [5] may in the future shift the problem a little from the large
scale to some “medium” scale. However, the challenge for industrial research to fa-
cilitate solution developers and architects will still lie in making advanced methods
available for components evaluation in terms of functional coverage analysis, techni-
cal integration assessment, testability, and risk management procedures in terms of
incorporating characteristics of different customizing patterns. To achieve progress in
evaluation of A-components on the large scale (e.g. complete business software
packages for potentially very different topics like e.g. ERP, order management or
collaboration) needs to improve practice in exactly these processes.

References

1. Szyperski, C.: Component Software. Addison Wesley 2002.
2. Richter, J.-P.: Wann liefert eine serviceorientierte Architektur echten Nutzen? Proceedings

Software Engineering 2005, Fachtagung des GI-Fachbereichs Softwaretechnik, 8.-
11.3.2005, Essen, Page 231-242

3. Siedersleben, J.: Moderne Software-Architektur – umsichtig planen, robust bauen mit
Quasar. dpunkt Verlag, 2004

4. Haft, M., Humm, B., Siedersleben, J.: The architect’s dilemma – will reference architectures
help? In: R. Reussner et al. (Eds.): Quality of Software Architectures and Software Quality
(QoSA-SOQUA 2005), Lecture Notes in Computer Science 3712, pp. 106 – 122, 2005.
Springer-Verlag, 2005

5. Woods, D.: Enterprise Service Architecture. Galileo Press. Bonn, 2004

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 386 – 389, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Incremental Software Reuse

Juan Llorens1, José M. Fuentes2, Ruben Prieto-Diaz3, and Hernán Astudillo4

1 Informatics Department. Universidad Carlos III de Madrid
Avda. de la Universidad, 30 E-28911 Leganés, 28911 Madrid, Spain

llorens@inf.uc3m.es
2 R&D Dept., The Reuse Company, Virginia, USA

josemiguel.fuentes@reusecompany.com
3 James Madison University,Virginia, USA

prietodiaz@cisat.jmu.edu
4 Universidad Técnica Federico Santa María,Valparaíso, Chile

hernan@inf.utfsm.cl

Abstract. Current reuse techniques disincentive their mass practice in software
development organizations because of their large initial investments, the
changes they required in ways of developing software, and their fragility in
front of domain evolutions. We argue that the root of these problems is the
poor resolution of retrieval techniques to identify candidate artifacts to utilize in
new projects. We sketch an approach to reuse based on artifacts retrieval by
content, which allows incremental adoption at low cost. The Incremental Reuse
Method (IRM), founded on these principles, can solve the big problems of
traditional reuse, allowing their application in all manner of organizations.

1 Why Isn’t Software Reuse as Widespread as It Should Be?

Software Reuse is a well known concept in Software Engineering: it could be
compared to the “holy grail” which has always been sought and has been impossible
to reach. The reuse concept brings up strong reactions among computer industry
professionals. All of us are aware that it represents a needed best practice we should
know and apply within our organizations [4] but many of us also show certain level of
skepticism in the success possibilities to institutionalize reuse for internal processes
improvement [1].

A possible reason to understand this paradox could perhaps be found in the
difficulty to balance both positive and negative effects towards its practice.

Among the benefits of practicing reuse we can mention the classical ones:
Increment of productivity, reduction of time to market, reduction of project planning
overheads, increment of quality, improvements in support and maintenance, better use
of resources, and better tackling of system complexity.

But not everything is so promising in this vision. Many professionals, including the
authors, consider that there are severe obstacles to introducing software reuse (further
explained in the next section):

− Significant resources must be spent to support the reuse process.
− The investments are usually very high, so organizations must perform Return on

Investment (ROI) analysis and there is high risk of failure.

 Incremental Software Reuse 387

− A specific Software Development Process (SDP) must be applied to produce SW,
which is usually quite different from classical SDPs.

− Comprehensive training processes must be performed.
− Extra efforts must be done in identifying commonalities and variabilities (C/V). In

fact, C/V identification is the core activity of the classical reuse processes.
− Extra efforts must be spent in supporting C/V knowledge.
− It is not easy to find in the market CASE applications fully supporting the reuse

process.

We believe these difficulties, in addition to the fact that the retrieval technology to
find artifacts by semantic content was non-existent, have been the key factors for the
low impact of software reuse among software development professionals.

2 Software Reuse So Far

The literature offers more than 30 different definitions of reuse and software reuse,
many of them with different shades. The 90s showed up several good definitions, like
the IEEE [3]: ’...a software module or other work product that can be used in more
than one computer program or software system’. Ezran, Morisio, and Tully stated, in
2002 [2] that ‘...is the systematic practice of developing software from a stock of
building blocks, so that similarities in requirements and/or architecture between
applications can be exploited to achieve substantial benefits in productivity, quality
and business performance’.

All of these definitions, covering nearly 40 years of experience, guide software
reusers to develop new products by “finding” and using existing work-products in
new projects, yet this has certainly NOT been applied in practice. Hence, the
approach to reuse was transformed into coping with commonality and variability in
order to define forthcoming reusable assets: this implies performing domain
engineering in advance. The results of this process were pre-modeled assets: Product
Lines (PLs), Generators, Frameworks... and everybody must/should (re)use them. As
a consequence to this philosophy, the reuse process had to be adapted to this way of
proceeding, and ROI issues appear. The investments to introduce reuse within an
organization are significant and depend on forthcoming issues like how the domain is
going to react in the future. Usually organizations don’t like this uncertain approach,
and reuse suffers from it.

3 Incremental Reuse Method (IRM)

The Incremental Reuse Method (IRM) approach minimizes the previously presented
drawbacks in order to offer a very attractive set of conditions for an organization to
“jump into” reuse. For us, those conditions are:

− It must be possible to introduce SW Reuse based on the argument that investment
should be minimal, almost zero.

388 J. Llorens et al.

− The introduction of Software Reuse must not impact the internal Software
Development Process in any significant way. The software engineers should carry
on their own SDP (perhaps with slight differences).

− Introducing Software Reuse doesn’t have to imply heavy training activities.
− It must be possible to introduce Software Reuse incrementally; no need to have or

model anything for reuse in advance. The artifacts from the finished projects
become the reusable artifacts for the new ones.

− The Software Reuse process must be robust against business dynamics (domain
changes) and technology evolution.

− ROI does not have to be the most important decision factor: Organizations should
be able to consider other criteria as well: Quality Improvement Issues, Time To
Market, Knowledge Management, Knowledge Value as an asset in the organization.

The IRM meets these conditions.

Fig. 1. C/V modeling in IRM

In IRM, the assets retrieval techniques and tools are considered essential. To
succeed with this approach, a repository must be able to represent all different
artifacts’ contents independently of their typology, as well as provide retrieval
algorithms for finding artifacts by content. In IRM, the repository representation
schema is based on the RSHP meta-model [5]. Aside from enhanced semantic
retrieval, IRM embraces the Commonality/Variability study as a need to provide
better support to universal reuse.

– Components (OTS Reuse, Interfacing)..
– Frameworks (Parameterize, Inheritance)
– Generators
– Product Lines (Configuration)

Variability level
of the new project

H

L

– No Reuse

– Use of Apps, Components, etc..

– Seek + Find [+ Trace] + Reuse

 FCP Method: Find + Copy/Paste Assets
– Eg. Requirements (Common Criteria)
– Eg. Class Diagrams, Use Cases, etc.

 FTCP Method: Find + Trace + Copy/Paste
Assets

– Eg. Requirements Tests for Requirements
– Eg. Classes Diagrams from Requirements, etc.

 Incremental Software Reuse 389

The most important aspects of the C/V modeling in IRM is that it is possible to
perform reuse in extremely high variability needs (including inter-domain reuse)
through the Seek + Find + Trace Navigation (SFT) Reuse (See Fig 1 above).
 Therefore, our working definition for reuse focuses on Retrieval and C/V
Engineering:

Reuse is the use of all kinds of [known or unknown] previously created artifacts
(assets) in a new project, but:

Slightly modified to fit with the problem or solution definition in the new project
(e.g. a design pattern applied to my particular domain) or Which were defined to work
in a different context or environment or application (e.g. a set of requirements coming
from a different application project) or Which needed to be configured to fit with
project requirements or specifications (e.g. a product line configured to a new
product) or Where only parts of them were incorporated to the new project (e.g. An
association between two UML classes coming from a previous UML Class diagram).

In order to put into practice the previous statements, the Incremental Reuse Method
pretends to offer a framework for the creation of a Reuse Unit within every interested
organization without huge investments. It is based on the Domain, Roles, Process and
Technology.

4 Conclusions

This article has proposed a method to solve the applicability problems of classical
reuse methods. The proposed process allows incremental adoption, without modifying
the organization’s software development process, at low cost, and with robustness to
domain evolution. The Incremental Reuse Method (IRM) is based on offering
retrieval and reuse of artifacts to all activities in the software development process.
These artifacts are stored in a repository that is maintained through incremental
indexing of all work products of an organization’s projects. Its low implementation
cost and minimal impact on existing SDP activities have given high success rates in
actual implementation cases. We have successfully implemented IRM in several
industrial settings.

References

[1] K.C. Desouza, Y Awazu, A. Tiwana: “Four dynamics for bringing use back into software
reuse.” Communications of the ACM, 49(1), January 2006.

[2] M. Ezran, M. Morisio, C. Tully: Practical Software Reuse. Practitioner Series, Springer
2002.

[3] IEEE Std 610.12-1990. IEEE Standard Glossary of Software Engineering (1990).
[4] I. Jacobson, M. Griss, P. Jonsson: Software Reuse: Architecture, Process and Organization

for Business Success. ACM Press. Addison Wesley 1997.
[5] J. Llorens, J. Morato, G. Genova, “RSHP: An information representation model based on

relationships.” In: Ernesto Damiani, Lakhmi C. Jain, Mauro Madravio (Eds.), Soft
Computing in Software Engineering (Studies in Fuzziness and Soft Computing Series,
Vol. 159), Springer 2004, pp 221-253.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 390 – 394, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Variability in Goal-Oriented Domain Requirements

Farida Semmak and Joël Brunet

LACL, Université Paris XII, CRI, Université Paris I
{semmak, brunet}@univ-paris12.fr

Abstract. The aim of the paper is to present a framework to contribute to the
improvement of requirements elicitation by reusing domain models. In our
approach, a domain model gathers goals organized in goal hierarchies
associated with domain rules and materialized in conceptual fragments. A
conceptual fragment represents an abstract view of the specification allowing
the realization of a given goal. To construct a system, the designer will extract
requirements from the domain model and adapt the obtained conceptual
fragments to the context of the system. Two principles are used to represent
domain models: abstraction, which allows the description of common properties
of a given domain, and variability, which allows the description of discri-
minatory properties of the domain. In our approach, variability is applied on the
three levels: goal, domain rule and conceptual fragment.

1 Introduction

It is recognized that one of the main reasons of project failures lies in errors in
expressing requirements, and more particularly in an erroneous interpretation of the
real world. Reuse-based engineering is one of the most promise ways to increase
software productivity and quality. More particularly, applying a reuse process at the
requirements engineering step may contribute to improve the overall system
development process [1, 2].

We present a framework to contribute to the improvement of requirements
elicitation by reusing domain models. We propose to describe and organize the
domain knowledge in the form of knowledge fragments [3]. The set of the knowledge
fragments forms a domain model that may be made available to the designer in order
to construct the future system. This domain model gathers the common properties of a
class of systems as well as its discriminating properties.

2 The Domain Model

2.1 Concepts for Abstraction

The aim is to describe a set of knowledge fragments related to a class of systems in a
given domain. A knowledge fragment is a triplet <goal, business rule, conceptual
fragment> in which the goal represents the usage intention, the business rule a domain
law with which the goal is consistent, and the conceptual fragment a behavior

 Variability in Goal-Oriented Domain Requirements 391

dependency between actors and objects allowing the satisfaction of the goal. Building
an application by reuse consists of instantiating knowledge fragments, that is: a) to
select the goals relevant for the organization; b) to select the domain rules; c) to adapt
the associated conceptual fragments to the context.

The concepts allowing to describe a knowledge fragment are now presented.

Definition 1. a goal defines a potential requirement that systems might satisfy; it
expresses what the end-user would wish to do.

A goal has a name and is described by a verb and at the most two parameters [4]. The
verb represents an action that the user would wish to do. The first parameter
represents a domain entity, which is the main object of the goal, and the second one
expresses the means by which a goal may be satisfied. For instance, the goal 'To
consult documents on internet' has for verb 'to consult', for object 'document' and for
means 'on internet '.

The goals form a tree structure (see figure 1) where the leaf nodes represent
operational goals to which conceptual fragments are associated, while higher-level
leaves represent abstract goals.

Fig. 1. A goal hierarchy of the library domain

To each goal are associated rules governing its realization.

Definition 2. a business rule defines a rule of the domain to which the goal must
conform; it is described by a name and a rule expression.

Business rules are determined prior to the definition of the business process that has
to be implemented for reaching a goal. They represent laws of the domain to which a
goal must conform. They have an impact on the behavior of future systems, because
they are taken into account in conceptual fragments.

There are of three types: ordering rules, triggering rules and safety properties. An
ordering rule expresses the order in which the subgoals of an abstract goal must be

to consult
documents
 on internet

to make documents available

to classify
documents

to store
physical

documents

to store
 digital

documents

to reference
documents

to manage
 borrowing

to manage
subscriber

to borrow
documents

to subscribe
to a library

to deal with
fees subscription

to store
documents

to consult
documents

to consult
documents
on place

to acquire
documents

to book
documents

renewable
contract

punctual
contract

392 F. Semmak and J. Brunet

carried out. A triggering rule is defined by a context that defines the situation in
which the rule applies, a set of conditions and a process. A safety property is a rule of
the domain that must always be satisfied in order to ensure the correct functioning of
a system.

Definition 3. a conceptual fragment expresses some behavioral dependencies between
the elements of the domain that interact in order to accomplish a goal.

A conceptual fragment expresses the materialization of a goal in accordance with the
business rules. It represents the reusable knowledge, that is, the knowledge that must
be adapted to obtain the model of the future system. For instance, the realization of
the goal 'To acquire documents' requires that the librarian put in orders of documents
from suppliers. There are an actor (librarian), some domain objects (document and
supplier), and some events (document order and document receipt).

A conceptual fragment can be summarized as a joint description of static and
dynamic aspects. It expresses, at a generic level, a contractual relationship between
domain objects and actors: its effective reuse may lead to different solutions
according to the organizational context.

2.2 Concepts for Variability

The issue is to highlight the discriminatory elements between systems of a given
domain. To express the variability of the domain, we adapt the feature concept of the
method Foda [5] to the three concepts of goal, business rule and conceptual fragment.

Two types of features allow variability at the goal level:

- a Feature property, attached to each goal, defines its mandatory or optional
characteristic (graphically represented by a small circle, see figure 1).

- a RefinementFeature property may be attached to a father goal to express the
different ways of refining it. A set (or a subset) of child goals is related by an
inclusive OR and is graphically represented by an arc between them. This means that
the analyst must choose at least one among these child goals.

Two types of features allow variability at the business rules level:

- a FeatureTR property, attached to each condition of a triggering rule, is either
‘mandatory’ or ‘optional’. It provides a flexible means of combining the conditions
that lead to satisfying the goal. For instance, the condition ‘AvailableBudget’ is
mandatory while the condition ‘IncreasingBorrowingRequest’ is optional, in the
‘DocumentPurchaser’ triggering rule.

- a FeatureSP property, attached to a safety property, is either 'mandatory' or
'optional'. For instance, the safety property defining the maximum number of
borrowed document (depending on the document type or the period) is mandatory.

The variability at the conceptual fragment level is taken into account in domain
objects. As in Foda, a feature – mandatory or optional – is attached to each property
of a domain object. Moreover, generalizing and parameterizing techniques are used in
order to differentiate systems.

In summary, the variability principle allows to consider the elements that discri-
minate systems of a given domain. The degree of discrimination varies depending on

 Variability in Goal-Oriented Domain Requirements 393

the goal, business rule or conceptual fragment level. The choice of goals has a great
impact on the structure of the future system, because they express requirements of
high abstraction level. After choosing a goal, one must determine the business rules
with which it should be consistent. Finally, the conceptual fragment associated to the
goal has to be adapted to the selected business rules.

3 Related Works

Domain engineering, as a support to requirements engineering, is a process that
consists, on the one hand, of eliciting the domain knowledge, structuring it,
abstracting it and, on the other hand, specifying a domain model. This model must be
sufficiently generic to constitute a framework to be used in the development of any
system of the same domain.

In the literature, there are two categories of approaches: the first ones apprehend
the requirements as objects and rules [1, 2, 5]. They use models like E/R, state
diagrams, object models and so on, in order to represent the common elements for all
applications of a given domain. However, each approach proposes its own solution to
represent the discriminatory elements. The FORM method [5] has been the first one
to propose the concept of feature, defined as a prominent or distinctive user-visible
aspect, quality or characteristic of a software system or systems. The concept of
feature has been widely used and extended [6]. The second ones propose the goal as a
key concept for eliciting system requirements [2, 4, 7] and for reuse [2, 8]. These
approaches are oriented towards the expression of problems. The model of the Elektra
project [8, 9] combines the goal concept with a classification by facets[9].

4 Conclusion

In this paper, we presented a framework that allows representing knowledge
fragments that may be reused for building an information system. Knowledge
fragments elaboration is based upon two principles: the abstraction principle, which
takes into account the common characteristics of a system class in a given domain,
and the variability principle, which allows emphasizing the discriminatory character-
istics of these systems. Future works will be pursued in several directions: to take into
account non-functional goals, to elaborate processes for domain knowledge iden-
tification and reuse, and to implement it in a tool intended to application engineers.

References

[1] Arango G., Domain Analysis Methods, in Software Reusability, Eds by W. Schäfer,
R.Prieto Diaz & M. Matsumoto, Ellis Horwood, 1994

[2] Dardenne A., Lamsweerde A., Fickas S., Goal-oriented Requirements Acquisition, Science
of computer, 20(1-2) April 1993

[3] Semmak F., Brunet J., A Metamodel for Domain Requirements Elicitation, LACL
technical report, may 2005

394 F. Semmak and J. Brunet

[4] Rolland C., Souveyet C., BenAchour C., Guiding Goal Modelling Using Scenarios, IEEE
TSE, Special issue on scenario Management, 1998

[5] Kang K., Kim S., Lee J. et al., FORM: A Feature-Oriented Reuse Method with Domain-
Specific Reference Architectures, Software Engineering, 5, 143-168, 1998

[6] Griss M., Favaro J., D’Alessandro M., Integrating Feature Modeling with the RSEB,
ICSR’98, pages 76–85, Vancouver, Canada, Juin 1998

[7] Lamsweerde A. Goal-oriented Requirements Engineering: A guided tour, Proc.RE’01, 5th
IEEE Int. Symposium on RE., Toronto, 2001

[8] Prekas N., Loucopoulos P., Rolland C., Grosz G., Semmak F., Brash D., Developing
Patterns for Assisting the Management of Knowledge, DEXA’99

[9] Prieto-Diaz R., Freeman, P., Classifying Software for Reusability, IEEE Software, Vol. 4,
No. 1, Jan. 1987

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 395 – 398, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Variability Modeling in a Component-Based Domain
Engineering Process

Ana Paula Terra Bacelo Blois1, 2, Regiane Felipe de Oliveira1, Natanael Maia1,
Cláudia Werner1, and Karin Becker2

1 Federal University of Rio de Janeiro
COPPE/UFRJ – System Engineering and Computer Science Program

P.O. Box 68511 – ZIP 21945-970 – Rio de Janeiro – RJ – Brazil
2 PUCRS - Catholic University of Rio Grande do Sul

Av. Ipiranga, 6681 – Prédio 30 – Bloco 4 – ZIP 90619-900 - Porto Alegre – RS- Brazil
{anablois, regiane, ntmaia, werner} @cos.ufrj.br,

{anapaula, kbecker}@inf.pucrs.br

Abstract. Domain Engineering (DE) and Component-based Development
(CBD) are approaches that focus on reuse. On the one hand, DE methods em-
phasize variability modeling in analysis phase. On the other hand, most CBD
methods gude on the development of components, with a minor focus on
reusability properties. This paper presents an approach to support variability
modeling, in a Component-based Domain Engineering Process.

1 Introduction

Domain Engineering (DE) aims at identifying and modeling common and variable
features for an application domain, in order to generate reusable artifacts [13]. In a
DE process, domain variability must be modeled throughout the whole software life
cycle (i.e. analysis, design and implementation), such that domain requirements are
consistently captured in artifacts that represent the domain at different abstraction
levels. In general, DE methods (e.g. [8], [9], [12], [14]) offer a better support to the
domain analysis phase. However, Application Engineering expects to reuse artifacts
from different phases, particularly design and implementation, in the construction of a
specific application. DE methods lack a proper notation for addressing domain vari-
ability in artifacts of different phases, as well as mechanisms to guarantee consistency
among corresponding artifacts.

CBD (Component-Based Development) is another approach targeted at reuse. How-
ever, although CBD methods (e.g. [3], [5], [7] and [1]) provide guidance for generating
components, the inherent variability of a family of applications (or domain) is rarely
considered.

CBD-Arch-De is an approach that combines concepts and techniques from both
DE and CBD. The striking features of CBD-Arch-De are: a) a more complete notation
to variability modeling, addressing different abstraction levels and types of artifacts;
b) a DE process focused on CBD; c) heuristics to support the mapping of variability
throughout different domain artifacts; d) criteria to support the creation of architec-
tural elements [2]; and, e) support for mapping technology-independent components

396 A.P. Terra Bacelo Blois et al.

into technology-dependent ones using a transformation model approach, based on
MDA [12]. All features are supported by the Odyssey Environment [11].

This paper discusses how CDB-Arch-De supports variability modeling during all
phases of DE, and how mapping heuristics are employed to consistently generate
artifacts in accordance to domain requirements. The remainder of this paper is organ-
ized as follows: Section 2 explores variability and modeling issues in CDB-Arch-DE
and final considerations are addressed in Section 3.

2 Variability Modeling in CDB-Arch-DE

In order to model variability, it is necessary to represent all domain concepts and their
relationships explicitly, allowing stakeholders (e.g. users, domain experts) to under-
stand each other [10]. The Features Model is the starting point of all domain modeling
activities. CBD-Arch-DE introduces the Odyssey-FEX notation for specifying a fea-
ture model, which extends the FODA notation. In Odyssey-FEX, all features must be
represented according to three dimensions: category (i.e. conceptual, functional or
technological), variability (i.e. variation point, variant or invariant) and optionality
(i.e. mandatory or optional). This classification schema influences not only the
construction of artifacts in the DE process, but the AE process as well.

In Odyssey-FEX, features are related to each other using UML relationships (e.g.
association, aggregation and composition). In addition, the notation proposes the
Alternative relationship, which is used among variation point features and their vari-
ant, as well as composition rules (i.e. inclusive and exclusive) with boolean operators,
to represent inclusive or exclusive constraints upon features.

From the features model, other domain artifacts are derived that represent require-
ments at different stages of the development process, namely Business Types, Use
Cases and Components. To capture variability in these artifacts, UML stereotypes are
proposed, which are used in combination with UML relationships to preserve domain
requirements semantics. In this sense, variability is represented by <<variation
point>>, <<variant>>> stereotypes and optionality is represented by the <<optional>>
stereotype. Artifacts that are not stereotypes are invariant or mandatory. The inclusive
composition rules are represented by relationships that already exist in other notations
(e.g. composition relationships among business types and required interfaces among
components). On the other hand, the exclusive rules are represented by a <<XOR>>
stereotype in the involved domain artifacts.

The main phases of CBD-Arch-DE process are depicted in Figure 1, together with
the respective artifacts. Further details on the process workflows can be found in [2].
Each type of artifact represents domain requirements according to a point of view and
abstraction level. Starting from the features models, artifacts are recursively generated
one from another as a result of DE analysis, design or implementation activities. These
generation activities are supported by mapping heuristics, in order to consistently
propagate the variability to all domain artifacts. Heuristics were proposed for mapping:
a) conceptual features into business types (BT), b) functional features into use cases
(UC), c) Business Types into Business Components (BC), d) Use Cases into Process
Components (PC) and e) technological features into technological components (IC and
UIC). In total, 33 heuristics were proposed, some of them illustrated in Table 1.

 Variability Modeling in a Component-Based Domain Engineering Process 397

The last phase is the Domain Implementation phase, in which Odyssey-MDA ap-
proach is used. Odyssey-MDA allows the developer to perform transformations of
platform independent component models, known as PIM (Platform Independent
Model), into platform specific component models, known as PSM (Platform Specific
Model) (e.g. EJB) and, later, to generate code for these components. The Domain
Engineer defines the desired platforms and the necessary transformations. After that,
the elements of the components model are prepared with a marking mechanism (e.g.
business stereotype in business component) that guides the execution of further trans-
formations. The Domain Engineer chooses a previously defined platform. Then, a
PIM is transformed into a specific model (PSM) for this platform. A representation in
source-code of the PSM is generated in the selected platform programming language.

Fig. 1. Phases and Models of CBD-Arch-DE Process

3 Final Considerations

This paper presented an approach to variability modeling in DE, which is part of the
CBD-Arch-DE process. The paper discussed variability modeling across artifacts of
different abstraction levels, and how the DE process employs heuristics to map vari-
ability into domain artifacts of lower level abstraction levels. Other features and a
systematic approach to transform PIM into PSM and criteria to group components into
architectural elements (which were not discussed in this paper). Observational studies
are under definition to evaluate the feasibility of all activities of the CBD-Arch-DE.

DE and CBD methods neither propose guidelines nor mechanisms to support the
reference architecture construction, considering the domain variability. In this sense,
the presented approach provides a supporting infrastructure that can help the domain

398 A.P. Terra Bacelo Blois et al.

engineer to obtain more valuable domain architectures which can be reused by do-
main analysts.

Table 1. Examples of Heuristics to guide de mapping through domain artifacts

Categories Heuristics
BT Each conceptual feature may be mapped to a business type.
UC Each functional feature must be mapped to a use case.

BC
If mandatory and optional business types are grouped, then the resultant component
must keep the mandatory property.

UC Each domain technology feature must be mapped into a utility component.

References

1. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D.,
Paech, B., Wüst, J., and Zettel, J.: Component-based product line engineering with UML.
Addison-Wesley Longman Publishing Co., Inc, Boston (2002)

2. Blois, A. P., Werner, C., and Becker, K.: Towards a Components Grouping Technique
within a Domain Engineering Process. EUROMICRO, Porto, September (2005) 18-25.

3. Braga, R. M. M., Werner, C.M.L., Mattoso, M.: Odyssey: A Reuse Environment Based on
Domain Models. 2nd IEEE Symposium on Application-Specific Systems and Software
Engineering Technology (ASSET'99), Richardson, USA, March (1999) 50-57

4. Brown, A.: Large-Scale Component-Base Development. Prentice Hall (2000)
5. Cheesman, J. and Daniels, J.: UML components: a Simple Process for Specifying Compo-

nent-based Software. Addison-Wesley Longman Publishing Co., Inc. (2000)
6. K. Czarnecki, S. Helsen, and U. Eisenecker, "Staged configuration using feature models,"

presented at Third International Conference Softtware Product Lines: SPLC 2004, Boston,
MA, USA, 2004.

7. D'Souza, D. F. and Wills, A. C.: Objects, components, and frameworks with UML: the ca-
talysis approach. Addison-Wesley Longman Publishing Co., Inc. (1999)

8. Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S.: Feature-
Oriented Domain Analysis (FODA) - Feasibility Study. Software Engineering Institute
(SEI), CMU/SEI-90-TR-21 (1990)

9. Kang, K. C., Lee, J., and Donohoe, P.: Feature-Oriented Product Line Engineering. IEEE
Software, Vol. 9, no. 4, Jul./Aug 2002 (2002) 58-65

10. Massen, T. V. d. and Lichter, H.: Modeling Variability by UML Use Case Diagrams. Pro-
ceedings REPL02 - International Workshop on Requirements Engineering for Product
Lines, Essen, Germany, September, 2002 (2002) 19-31

11. Odyssey: Odyssey SDE. In: http://reuse.cos.ufrj.br/odyssey, Accessed in: 25/11/2005
12. OMG: MDA Guide Version 1.0.1. In: http://www.omg.org/docs/omg/03-06-01.pdf, Ac-

cessed in: 08/09/2005
13. Prieto-Diaz, R. and Arango, G.: Domain Analysis Concepts and Research Directions. In:

Prieto-Diaz, R. and Arango, G. eds.): Domain Analysis and Software Systems Modeling.
IEEE Computer Society Press (1991) 312

14. Riebisch, M; Böllert, K.; Streitferdt, D. and Philippow, I. "Extending Feature Diagrams
with UML Multiplicities," presented at Proceedings of 6th Conference on Integrated De-
sign & Process Technology, Pasadena,California, USA, 2002.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 399 – 402, 2006.
© Springer-Verlag Berlin Heidelberg 2006

GENMADEM: A Methodology for Generative
Multi-agent Domain Engineering

Mauro Jansen and Rosario Girardi

Federal University of Maranhão (UFMA),
Av. dos Portugueses, s/n, Campus do Bacanga, CEP 65080-040, São Luís–MA, Brasil

maurojansen@yahoo.com.br, rgirardi@deinf.ufma.br

Abstract. The generative approach is one of the most productive ways to
promote the automatic reuse in software product lines. Multi-Agent Domain
Engineering is a process to build multi-agent system families. This paper
describes GENMADEM, an ontology-based methodology for generative multi-
agent domain engineering whose main products are ontology-based domain
models, domain specific languages and application generators.

Keywords: Generative Software Reuse; Multi-Agent Systems Development
Methodologies; Domain Engineering; Domain Specific Languages; Generators.

1 Introduction

The generative development of software is an approach based on Software Reuse
[10], Domain Engineering [2][8] and Software Generators [1][2][9], that aims the
study and definition of methods that allow the production of software through the
reuse of existing artifacts, in a rapid and systematized way, facilitating their
maintenance and reducing their development costs.

A software product family [12] is a set of software products with similar features
enough to allow the definition of a reuse infrastructure for their mass production.
Domain Engineering provides this infrastructure defining a development process for
reuse, collecting the knowledge about software development in a specific domain in
the form of reusable software artifacts and providing support to reuse them. In this
generative approach, products of Domain Engineering are Domain Models, Domain-
specific frameworks, Domain Specific Languages (DSLs) and Application Gene-
rators. DSLs [3][11][14] are programming or specification languages with high
abstraction level, vocabulary near to the one used by domain experts and expressive
force focused on a particular domain.

In the process of Application Engineering, complementary to the one of Domain
Engineering, a generator is used to map the specification of an application in a DSL to
a specific application of the system family.

MADEP (“Multi-Agent Domain Engineering Process”) is a process for the
development of DSLs and application generators to build multi-agent system families
in specific domains.

This paper introduces GENMADEM, a methodology supporting the MADEP
process.

400 M. Jansen and R. Girardi

2 The GENMADEM Methodology

GENMADEM (“Generative Multi-Agent Domain Engineering Methodology”) is
methodology that integrates and extends the MADEM methodology [5] and the TOD-
DSL technique [7], providing a generative and ontology-based approach to Multi-
agent Domain Engineering. The methodology is supported by ONTOGENMADEM,
an ontology-driven tool for the specification of DSLs and design of application
generators directly from domain models created in the domain analysis phase of
MADEM.

Figure 1 shows the MADEP generative process of Multi-agent Domain Engi-
neering. The process consists of six phases (domain analysis, domain design, domain
implementation, pattern extraction and representation, DSL specification and DSL
generator development). Based on the analysis of existent specific applications,
knowledge of the domain and requirements of a family of systems, the phase of
domain analysis, supported by the GRAMO technique [4], produces a domain model
that represents the common and variable requirements of the systems in the domain
and the dependences among them. The Domain Design phase, supported by the
DDEMAS [6] technique, produces a set of models of domain-specific frameworks
that are reusable multi-agent solutions to those requirements. In the Domain
Implementation phase, software agents integrating these frameworks are created. The
pattern extraction and representation, supported by pattern extraction and represent-
tation guidelines and development experiences, produces software patterns and
pattern systems that can be reused in the phases of both Domain Engineering and
Application Engineering. Until this point, reuse is compositional. The phases “DSL
Specification” and “Generator Development” approach the generative reuse. The DSL
Specification phase, supported by the TOD-DSL technique, produces a DSL based on
a set of domain models. The Generator Development phase produces an Application
Generator based on the DSL and the reusable multi-agent frameworks.

GENMADEM improves the variability modeling technique initially proposed by
GRAMO [4], including ideas from feature modeling [2]. The GENMADEM
specification is supported by the ONTOGENMADEM tool, where all the products of
GENMADEM are represented as instances of an ontology representing its develop-
ment knowledge. The ONTOGENMADEM tool was designed and imple-mented as a
plug-in of the knowledge-based development environment Protégé [13]. The phases
of GENMADEM, listed in Table 1, are described as follows.

DSL Specification. In this phase, the vocabulary, grammar and semantics of the DSL
is specified through the instantiation of the classes “DSL Vocabulary” and “DSL
Grammar” of the ONTOGENMADEM ontology. The DSL specification is fully
automated in ONTOGENMADEM starting from the analysis of the common and
variable requirements of the family specified in a domain model. The DSL semantics
is supplied by the semantic relationships among the terms of the vocabulary and the
instances of the ontology. The pragmatics specification phase documents all the
aspects of use of the DSL. It must include descriptions of the DSL, domain,
vocabulary, syntax, generator and examples.

 GENMADEM: A Methodology for Generative Multi-agent Domain Engineering 401

Fig. 1. The generative process of Multi-agent Domain Engineering

Table 1. GENMADEM phases and tasks

Phases Tasks Products
Syntax Specification Vocabulary and grammar
Semantics specification DSL Semantics

DSL Specification

Pragmatic specification DSL documentation
Configuration rules definition Exigibility and mutual exclusion rules Generator design
Mappings definition Configuration mappings

Generator Design. The generator design includes two tasks: the definition of the
configuration rules and the configuration mappings. The configuration rules are the
details that identify the valid and invalid combinations among the concepts selected in
a DSL program, and they are done in the form of exigibility rules and mutual
exclusion rules. The mappings define the knowledge of how the generator makes the
mapping of the DSL high-level abstractions for implementation-oriented abstractions
in the reused domain-specific frameworks.

3 Concluding Remarks and Further Work

Generative software development is gaining importance in Software Engineering, but
there are still few related works in the multi-agent system engineering community.
The increasing demand of multi-agent systems turns this approach attractive,
especially, when time and development cost reduction are goals and when the number
of systems in the family justify the cost of the generator construct.

402 M. Jansen and R. Girardi

This paper introduced GENMADEM, a generative methodology for Multi-agent
Domain Engineering that aims the development of DSLs and generators to allow
generative reuse of multi-agent system families.

ONTOGENMADEM, a Protégé plug-in for the application of GENMADEM has
been developed for vocabulary and code generation.

A case study is being conducted to evaluate MADEM and ONTOGENMADEM,
consisting on the construction of a DSL and application generator for the
development of information filtering and retrieval multi-agent applications.

References

1. Cleveland, J.C.: Program Generators with Java and XML". Prentice Hall, Inc., Upper
Saddle River, NJ (2001)

2. Czarnacki, K.: Generative Programming: Principles and Techniques of Software
Engineering Based on Automated Configuration and Fragment-Based Component Models.
Ph.D. thesis, Technische Universität Ilmenau, Germany (1998).

3. Deursen, A., Klint, P., Visser, J.: Domain-specific languages: An annotated bibliography.
ACM SIGPLAN Notices, (2000) 35(6): 26-36

4. Girardi, R., Faria, C.: An Ontology-Based Technique for the Specification of Domain and
User Models in Multi-Agent Domain Engineering. CLEI Electronic Journal, V. 7, N. 1,
Pap. 7. (2004)

5. Girardi, R., Lindoso, A.: An Ontology-based Methodology for Multi-agent Domain
Engineering. In: 3rd Workshop on Multi-Agent Systems: Theory and Applications
(MASTA 2005) at 12th Portuguese Conference on Artificial Intelligence (EPIA 2005), Ed.
IEEE. Covilhã, Portugal. (2005)

6. Girardi, R., Lindoso, A.: DDEMAS: A Domain Design Technique for Multi-agent Domain
Engineering. Lecture Notes in Computer Science, Perspectives in Conceptual Modeling:
ER 2005 Workshops CAOIS, BP-UML, CoMoGIS, eCOMO, and QoIS, Vol. 3770/2005,
ISSN 0302-9743., Ed. Springer-Verlag GmbH, pp. 141-150. Klagenfurt, Austria. (2005)
24-28

7. Girardi, R., Serra, I.: Using Ontologies for the Specification of Domain-Specific
Languages in Multi-Agent Domain Engineering. In: Proceedings of the Sixth International
Bi-Conference Workshop on Agent-oriented Information Systems (AOIS-2004) at The
16th International Conference on Advanced Information Systems Engineering
(CAISE’04), Riga, Latvia (2004) pp 295-308

8. Harsu, M.: A Survey of Domain Engineering”. Report 31, Institute of Software Systems.
Tampere University of Technology. (2002)

9. Herrington, Jack.: “Code Generation in Action”. Manning, Greenwich, CT. (2003)
10. Krueger, C. W.: Software Reuse., ACM Computing Surveys 24 (1992), 134-183.
11. Mernik, M., Heering, J., Sloane, Anthony M.: When and How to Develop Domain-

Specific Languages. Stichting Centrum voor Wiskunde en Informatica (2003)
12. Parnas, D. L.: On the design and development of program families. IEEE Transactions on

Software Engineering, SE-2(1):1-9, (1976)
13. The Protégé Project. Available at: http://protege.stanford.edu.
14. Widen, T. and Hook, J.: Software design automation: Language design in the context of

Domain Engineering. In the 10th International Conference on Software Engineering &
Knowledge Engineering (SEKE'98), San Francisco Bay, California (1998) pp 308-317

Product Line Architecture for a Family of
Meshing Tools�

Maŕıa Cecilia Bastarrica1, Nancy Hitschfeld-Kahler1, and Pedro O. Rossel1,2

1 Computer Science Department, FCFM, Universidad de Chile, Chile
2 Dept. Computación e Informática, Universidad Católica del Maule, Chile

{cecilia|nancy|prossel}@dcc.uchile.cl

Abstract. Meshing tools are traditionally built in a one by one basis
without reusing already developed parts. However, there are several con-
cepts within this application domain that are present in most tools. De-
veloping software components implementing these concepts is extremely
time consuming and requires highly specialized programmers. Software
product lines is a way of systematically reusing assets. We propose a lay-
ered product line architecture for meshing tools. We specify it formally
using xADL, and we show that it fits some already built tools.

1 Introduction

A mesh is a discretization of a domain; meshing tools generate and manage these
discretizations. Meshing tools are inherently sophisticated software due to the
complexity of the concepts involved, the big amount of interacting elements they
manage, and the application domains where they are used. They need to accom-
plish specific sophisticated functionality while still having a good performance;
lately, however, modifiability and flexibility have also become relevant.

There are many domains where meshing tools are used ranging from mechan-
ics design to medicine [6], each domain requires slightly different functionality.
Software engineering practices have seldom been used in meshing tool develop-
ment though there have been some efforts lately mainly building general purpose
libraries and using object-orientation and design patterns. In the software prod-
uct line approach, the product line architecture (PLA) is reused by all software
products in the family [3]. Therefore, the PLA should be carefully designed mak-
ing sure it will produce software that complies with the desired requirements.

We present the PLA for a family of meshing tools that promotes flexibility
and modifiability, so different existing algorithms, data structures, data formats
and visualizers could be combined in different ways to produce different tools.
Our PLA follows the layered architectural pattern [4]. Sometimes it is argued
that layered architectures penalize performance, but we have seen that perfor-
mance does not degrade significantly with the proposed PLA. We formally define
the PLA using xADL 2.0 [5]; this language has shown to be appropriate to specify
PLAs. We show already implemented tools as examples of our product family.
� The work of Nancy Hitschfeld was supported by Fondecyt N◦1061227. The work of

Pedro Rossel was supported by grant No. UCH 0109 from MECESUP, Chile.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 403–406, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

404 M.C. Bastarrica, N. Hitschfeld-Kahler, and P.O. Rossel

2 Product Line Architecture

Independently of the application domain, any meshing tool should provide cer-
tain general functionality: read the domain geometry and physical values, gen-
erate an initial mesh, refine, derefine or smooth a mesh according to a quality
criterion, and finally store the mesh into a file.

The PLA limits the product line scope, but at the same time it should be
flexible to allow designers to build all desired tools. Flexibility and interchange-
ability guide our PLA design, this is why we chose a layered architecture. Figure 1
shows the specification of the meshing tool PLA using ArchStudio [1]. The archi-
tecture is composed by four layers: User Interface, Algorithms, Model and Input
Output. In xADL, each layer is defined as a structure; Figure 2 shows the xADL
specification of the Refine module.

Fig. 1. Meshing Tool PLA

Refine and/or improve represent the core functionality of a meshing tool.
In our PLA, both are presented as optional even though it may seem counter
intuitive. The Face module in the Model layer is also optional; in 3D tools there
must exist a Face module, but it is meaningless in 2D.

As we can see in Figures 1 and 2, Refine exposes two interfaces, called
Refine.Top and Refine.Bottom, respectively. The former has the direction in,

Product Line Architecture for a Family of Meshing Tools 405

- <types:component types:id=“Refine” xsi:type=“types:Component”>
<types:description xsi:type=“instance:Description”>

Refine module</types:description>
- <types:interface types:id=“Refine.Top” xsi:type=“types:Interface”>

<types:description xsi:type=“instance:Description”>
Top interface</types:description>

<types:direction xsi:type=“instance:Direction”> in</types:direction>
</types:interface>
- <types:interface types:id=“Refine.Bottom” xsi:type=“types:Interface”>

<types:description xsi:type=“instance:Description”>
Bottom interface< /types:description>

<types:direction xsi:type=“instance:Direction”> out</types:direction>
</types:interface>
+ <options:optional xsi:type=”options:Optional”>

</types:component>

Fig. 2. Refine Module Specification

and the latter out ; so this component can be used by any component in the
upper layer, and it may use other modules in the lower layer, following the rules
of the layered architectural pattern. As Refine is optional, its xADL specification
includes the options:optional tag indicating optionality.

3 Product Instantiation

Designing a meshing product has two stages: component type selection and im-
plementation selection. First, the component types are chosen; here some of the
optional component types may not be included. Then, a particular implementa-
tion is chosen for every selected component type. Thus, different meshing tools
may differ in their functionality or in their implementation. For example, simu-
lating semiconductor devices using the control volume method requires to have
anisotropic Delaunay conforming meshes where no part of a Voronoi region of an

Table 1. 2D control volume mesh and 3D control volume mesh

Comp. Description
Type

Selector Allows to enter a specific improvement region and criterion, and also to choose the following
algorithm to be applied (either Improve or Final)

Initial Reads the already generated Delaunay mesh
Improve Applies the Delaunay improvement algorithm to the specified region with a certain criterion

Final Post-processes the mesh eliminating obtuse angles opposite to the boundary
(Non obtuse boundary algorithm)

Criterion Improvement criteria such as Maximum edge vertex connectivity and Maximum angle
Region Region to be improved; Whole geometry is used, but it may also be Circle

Selector Allows to enter a list of criteria and their associated regions, and then the whole process
is invoked

Initial Reads the geometry and generates a first coarse mesh (Fit Device Geometry)
Refine Divides element in order to fit physical and geometric parameter values (Refine Grid)

Final Improves elements in order to fulfill the Voronoi region requirement and generates the final
mixed element mesh (Make Irregular Leaves Splittable)

Region Regions where the refinement is applied, e.g. cuboid or rectangle, among others
Criterion Doping Difference and Longest Edge as the main refinement criteria

Format Outputs the mesh in a format understandable by the visualizer
(Write Geometrical Information and Write Doping Information)

406 M.C. Bastarrica, N. Hitschfeld-Kahler, and P.O. Rossel

internal point is outside the domain. In 2D, this is fulfilled if there is no obtuse
angle opposite to boundary/interface edges. In 3D, for each boundary face the
center of the smallest circumsphere must be inside the domain. Large angles
inside the domain and high vertex edge connectivity must also be avoided.

In [2], a tool for the simulation of semiconductor devices using the control
volume method is described. Here the mesh is read in a format the tool is able to
understand, so the Format component has a dummy functionality. This tool is
used for improving and post-processing a mesh already generated and refined by
another tool. A tool for semiconductor simulation in 3D is described in [7]. In this
case, the mesh is composed of different types of elements, i.e. cuboides, prisms,
pyramids and tetrahedra. The implementation is based on a modified octree
approach. Even though it was not developed with SPL concepts in mind, it fits
the PLA with little effort. The component types chosen and the implementations
for each tool are described in the first and second part of Table 1, respectively.

4 Conclusion

We proposed a layered PLA for a meshing tool SPL and we showed that a
variety of diverse meshing tools fit its structure: control volume meshes for 2D
and 3D. By formally specifying the PLA using xADL, we got an architecture
that was simple enough to be easily understood, while general enough to be able
to capture the abstractions behind a wide variety of meshing tools. Having an
integrated graphical and textual modeling tool greatly helped in this process.

References

1. ArchStudio 3. Architecture-Based Development Environment. Inst. SW Research,
Univ. of California, Irvine, 2005. http://www.isr.uci.edu/projects/archstudio/.

2. Maŕıa Cecilia Bastarrica and Nancy Hitschfeld-Kahler. Designing a product family
of meshing tools. Advances in Engineering Software, 37(1):1–10, Jan 2006.

3. Jan Bosch. Design and Use of Software Architectures. Addison Wesley, 2000.
4. Frank Buschmann et al. Pattern Oriented Software Architecture. Wiley, 1996.
5. Eric M. Dashofy et al. A Comprehensive Approach for the Development of Modu-

lar Software Architecture Description Languages. ACM Transactions on Software
Engineering and Methodology, 14(2):199–245, 2005.

6. Rod W. Douglass et al. Current views on grid generation: summaries of a panel
discussion. Numerical Heat Transfer, Part B: Fundamentals, 41:211–237, Mar 2002.

7. Nancy Hitschfeld et al. Mixed Element Trees: A Generalization of Modified Octrees
for the Generation of Meshes for the Simulation of Complex 3D Semiconductor
Device Structures. IEEE Trans. on CAD-ICS, 12(11):1714–1725, Nov 1993.

Binding Time Based Concept Instantiation in
Feature Modeling

Valentino Vranić and Miloslav Š́ıpka

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technology

Slovak University of Technology, Ilkovičova 3, 84216 Bratislava 4, Slovakia
vranic@fiit.stuba.sk, miloslav.sipka@gmail.com

Abstract. In this paper, we address the issue of concept instantiation
in feature modeling with respect to binding time. We explain the impact
of such instantiation on applying constraints among features expressed
in feature diagrams and as additional constraints and propose a way to
validate a concept instance under these new conditions.

1 Introduction

Feature modeling aims at expressing concepts by their features as important
properties of concepts taking into account feature interdependencies and vari-
ability in order to capture the concept configurability [3]. A concept is an
understanding of a class or category of elements in a domain [3]. Individual
elements that correspond to this understanding are called concept instances.
While a concept represent a whole class of systems or parts of a system, an in-
stance represents a specific configuration of a system or a part of a system defined
by a set of features. Concept instances may be used for feature model validation
and manual or automatic configuration of other design models or program code
of specific products in a domain [2, 3].

When designing a family of systems, we have to balance between statically and
dynamically bound features. In general, dynamic binding is more flexible as we
may reconfigure our system at run time, while static binding is more efficient in
terms of time and space. Although they often embrace the information on feature
binding time, contemporary approaches to feature modeling do not consider the
time dimension during concept instantiation.

This paper focuses on the issue of concept instantiation (Sect. 2) and valida-
tion of concept instances with respect to binding time (Sect. 3). The paper is
closed by a discussion (Sect. 4).

2 Concept Instantiation in Time

Binding time describes when a variable feature is to be bound, i.e. selected to
become a mandatory part of a concept instance. The set of possible binding times

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 407–410, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

408 V. Vranić and M. Š́ıpka

depend on a solution domain. For compiled languages they usually include source
time, compile time, link time, and run time [1].

An instance I of the concept C at time t is a concept derived from C by
selecting its features which includes the C’s concept node and in which each
feature f whose parent is included in I obeys the following conditions:

1. If f is a mandatory feature, f is included in I.
2. If f is a variable feature whose binding time is earlier than or equal to t,

f is included in I or excluded from it according to the constraints of the
feature diagram and additional constraints associated with it. If included,
the feature becomes mandatory for I.

3. If f is a variable features whose binding time is later than t, f may be
included in I as a variable feature or excluded from it, or the constraints
(both feature diagram and additional ones) on f may be made more rigid
as long as the set of concept instances available at later instantiation times
is preserved or reduced.

As follows from this definition,1 a feature in a concept instance may be bound,
in which case it appears as a mandatory feature, or unbound, in which case it
stays variable. Mandatory features and features bound in previous instantiations
are considered as bound. A concept instance may be instantiated further at later
instantiation times.

The constraints—both feature diagram and additional ones—on a variable
features whose binding time is later than the instantiation time may be made
more rigid as long as the set of concept instances available at later instantiation
times is preserved or reduced. An example of this is a transformation of a group
of mandatory or-features (Fig. 1a) into a group of alternative features (Fig. 1b).

C

a cb

C

a cb

C

cb

(a) (b) (c)

Fig. 1. Reducing the set of concept instances

Variable features with binding times later than the instantiation time are
potentially part of concept instances at later binding times. Again, such features
may be excluded at instantiation times earlier than their binding times as long
as the set of concept instances available at later instantiation times is preserved
or reduced. Consider a group of three alternative features (Fig. 1b) with run-
time binding. At source time, one of these features may be excluded (Fig. 1d).
However, none of the two remaining features may be excluded since preserving
only one of them will force us to make it mandatory, which is illegal, or optional,
which will allow an originally unforeseen concept instance to be created: the one
with no features from the group.
1 The definition is based on our earlier concept instance definition [7].

Binding Time Based Concept Instantiation in Feature Modeling 409

3 Concept Instance Validation

A concept instance is valid if its features satisfy the constraints. In general, a
constraint—be it a feature diagram constraint or an additional one— may be
evaluated only if all the features it refers to are bound. However, some logical
expressions can be evaluated without knowing the values of all of their variables.
Suppose we are instantiating a simple concept in Fig. 2a at source time (with no
additional constraints). If we bind the x feature, the or-group constraint will be
satisfied regardless of the y feature binding. Thus, we may omit this constraint
transforming the y feature into an optional one as shown in Fig. 2b.

It is also possible to omit x. The only possibility for y is to leave it optional,
as shown in Fig. 2c, but it has to be assured it will finally be bound (which can
be done only at run time). For this purpose, we must add a trivial constraint to
this instance: y (y has to be true, i.e. bound).

C

x y

(a) (b) (c)

run timesource time

C

x y

run time

C

y

run time

Fig. 2. Dealing with features whose binding time is later than the instantiation time

By excluding features from feature diagrams, the feature diagram constraints
are gradually relinquished. After a successful concept instance validation, all
additional constraints that refer to the features whose binding time is not later
than the instantiation time can be safely removed from the model. All other
constraints have to be postponed for further instantiation.

4 Discussion

In this paper, we presented an approach to concept instantiation with respect
to binding time. We analyzed the impact of introducing the time dimension into
concept instantiation on concept instance validation with respect to both feature
diagram and additional constraints. We have also developed a prototype tool that
supports such instantiation (available at http://www.fiit.stuba.sk/˜vranic/fm/).

Concept instantiation with respect to feature binding time is similar to staged
configuration of feature models proposed in conjunction with cardinality-based
feature modeling [5, 6]. Although consecutive work [4] mentions a possibility of
defining configuration stages in terms of the time dimension, this approach does
not elaborate the issue of feature binding time with respective consequences on
validation of concept specializations.

Concept instantiation with respect to binding time can be used to check for
“dead-end” instances that may result into invalid configurations of a running

410 V. Vranić and M. Š́ıpka

system. Such configuration may miss some features required by other, bound
features, which will lead to a system crash if such features are activated. Simi-
larly as staged feature model configuration, concept instantiation with respect
to binding time could be used for creating specialized versions of frameworks [5],
which would represent a source time instantiation, and in software supply chains,
optimization, and policy standards [4].

Partial validation of the constraints that incorporate unbound features may
be improved by transforming them into the normal conjunctive form. This would
enable to extract parts of such a constraint with bound features, while conjuncts
with unbound features would be simple enough to directly determine whether
they can be evaluated or not. As a further work, we plan to explore consequences
of applying this approach to cardinality-based feature models [5].

Acknowledgements. The work was supported by Slovak Science Grant Agency
VEGA, project No. 1/3102/06, and Science and Technology Assistance Agency
of Slovak Republic under the contract No. APVT-20-007104.

References

[1] James O. Coplien. Multi-Paradigm Design for C++. Addison-Wesley, 1999.
[2] Krzysztof Czarnecki and Michal Antkiewicz. Mapping features to models: A tem-

plate approach based on superimposed variants. In Robert Glück and Michael R.
Lowry, editors, Proc. of Generative Programming and Component Engineering, 4th
International Conference, GPCE 2005, LNCS 3676, pages 422–437, Tallinn, Esto-
nia, October 2005. Springer.

[3] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programing: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[4] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing cardinality-
based feature models and their specialization. Software Process: Improvement and
Practice, 10:7–29, January/March 2005.

[5] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged configuration
through specialization and multi-level configuration of feature models. Software
Process: Improvement and Practice, 10:143–169, April/June 2005.

[6] Krzysztof Czarnecki and Chang Hwan Peter Kim. Cardinality-based feature mod-
eling and constraints: A progress report. In International Workshop on Software
Factories, OOPSLA 2005, San Diego, USA, October 2005.

[7] Valentino Vranić. Reconciling feature modeling: A feature modeling metamodel.
In Matias Weske and Peter Liggsmeyer, editors, Proc. of 5th Annual International
Conference on Object-Oriented and Internet-Based Technologies, Concepts, and
Applications for a Networked World (Net.ObjectDays 2004), LNCS 3263, pages
122–137, Erfurt, Germany, September 2004. Springer.

Aspects as Components

Marcelo Medeiros Eler and Paulo Cesar Masiero

Dept. of Computer Science, ICMC - University of Sao Paulo,
13560-970 Sao Carlos - SP - BR. P.O.Box 668

{mareler, masiero}@icmc.usp.br

Abstract. An adaptation of the UML Component method to design
crosscutting components is briefly presented. Such components are al-
lowed to crosscut only the public interface of base (convencional) compo-
nents. The design and implementation of crosscutting components using
the language JAsCO is discussed.

1 Introduction

Components are units of composition with contractually specified interfaces and
explicit context dependencies only [4]. Component-based software development
(CBSD) aims at decomposing software into independent modules that are easy to
manage, reuse and evolve. Several methods to support CBSD have been proposed
[1, 4, 6], which usually provide guidelines on how to encapsulate concerns into
components. However, there are crosscutting concerns such as logging, tracing
and persistence, that cannot be implemented as components using tools like
CORBA, EJB and COM. By their nature, they crosscut the component structure
within components and across the components’ boundaries [3].

A way to solve this problem is to use containers but the calls to the services
provided by them are still spread along several components. Another way is to
combine CBSD with aspect-oriented software development (AOSD) to support
the implementation of crosscutting concerns as independent modules. The pro-
blem with this combination is that, by their nature, aspects may crosscut the
internal component structure thus clashing with the component opaqueness. A
solution to this is to compromise aspect expressiveness allowing aspects to ope-
rate only on the public operations exposed in the components’ interfaces and
forbidding them of extending any operation through inter-type declarations [3].

We show briefly an adaptation of the UML Components method [1] to pro-
duce a component-based design that also includes aspectual (crosscutting) com-
ponents, preserving the component opaqueness by allowing only crosscutting of
public operations in the interface of base components. A brief introduction to the
component architecture that is produced and to how crosscutting components
can be designed to be reused is presented.

2 Component/Aspect Architecture

We have devised a method to develop software with components and aspects.
Using this method, we produce a component/aspect architecture as the one

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 411–414, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

412 M.M. Eler and P.C. Masiero

shown in Figure 1 (part A) for a Hotel Reservation System (HRS) [1]. In the ar-
chitecture, we have crosscuting (LoggingOpMgr) and base componentes (Reser-
vationSystem and CustomerMgr, for example). The crosscutting component
provides a crosscutting interface and requires services from business components
(UserMgr and LoggingMgr). The diamond and the interface name ’ICC’ prefix
both indicate a crosscutting interface.

<<comp spec>>
ReservationSystem

<<aspect comp spec>>
LoggingOpMgr

<<comp spec>>
CustomerMgr

<<comp spec>>
HotelMgr

<<comp spec>>
BillingSystem

<<comp spec>>
UserMgr

<<comp spec>>
LoggingMgr

ICustomerMgt

IInputOp

IOuputOp

ICCLoggingOpMgt

IUserMgt

ILoggingMgtIBilling

IHotelMgt

IInput:ReservationSystem

ICCLoggingOpMgt:LoggingOpMgr

inputOp()

2: registerExecutedOperation(msg)

1: do_inputOp()

<<after>>

A

B

Fig. 1. Component/aspect architecture for the Hotel Reservation System [1]

The semantics for this diagram is that any operation in the interface of IIn-
putOp will be crosscut by the crosscutting component when called by any other
component and is enhanced by the behavior specified at the crosscutting inter-
face. Following the guidelines of Clarke and Baniassad [5], the woven behavior
may be represented as in Figure 1 (part B) where, for each operation crosscut
(e.g. inputOp()), we create a copy of this operation in do op1() and a new op-
eration inputOp(). In this case, this new operation calls the original operation
(do op1()) and after that calls the crosscutting operation registerExecutedOp-
eration().

3 Design and Reuse of Aspectual Components

There are many possible designs for an aspectual component, all of them influ-
enced by the AOP language used and also by the intended reuse: if white box
or black box. A possible way to generalize a component so that it can be reused
without change of the code (black box) is to have its code prepared to be used
in as many as possible advice configurations such, for example, before, after,
and before followed by after. It is difficult to foresee all the possible uses of an
around advice because a new behavior is to be executed instead of the original

Aspects as Components 413

operation; but this can be done for a white box reuse. The different types of
advices that are available in the component implementation have to be made
clear in its documentation.

The code for the LoggingOpMgr component implemented in JAsCO [2] is
shown in Figure 2 (part A). The code is prepared to be used in all three situations

class LoggingOpMgr

{

 public void registerExecutedOperation(String msg) {

 // code of registerExecutedOperation

 }

 hook ICCLoggingOpMgt

 {

 ICCLoggingOpMgt(method(..args)) {

 call(method);

 }

 before(){

 global.registerExecutedOperation("BEFORE::"+ msg);

 }

 after() {

 global.registerExecutedOperation("AFTER::"+ msg);

 }

}

A

B static connector installLoggingOpMgr

 LoggingOpMgr.ICCLoggingOpMgt ICCL =

 new LoggingOpMgr.ICCLoggingOpMgt

 ({ * ReservationSystem.makeReservation(..),

 * ReservationSystem.amendReservation(..),

 * ReservationSystem.cancelReservation(..),

 * ReservationSystem.beginStay(..),

 * ReservationSystem.registerClient(..)});

 ICCL.before();

 ICCL.after();

}

Fig. 2. JAsCo Code for the LoggingOpMgr component

<<comp spec>>
CarRentalPriv

<<comp spec>>
CarRentalPriv

<<aspect comp spec>>
LoggingOpMgr

<<comp spec>>
CustomerMgr

<<comp spec>>
CarMgr

<<comp spec>>
BillingMgr

<<comp spec>>
UserMgr

<<comp spec>>
LoggingMgr

ICustomerMgt

IPickUpMgt
IInitialPage

ICartMgt

IRentalMgt
IReservationMgt

ICCLoggingOpMgt

IUserMgt

ILoggingMgt

IBillingMgt

ICarMgt
recordCarFine(..)
payment(..)
rentCar(..)

makeReservation(..)

static connector installLoggingOpMgr
{
 LoggingOpMgr.ICCLoggingOpMgt ICCL =
 new LoggingOpMgr.ICCLoggingOpMgt({* CarRentalPub.makeReservation(..),
 * CarRentalPriv.recordCarFine(..),
 * CarRentalPriv.payment(..),
 * CarRentalPriv.rentCar(..)});
 ICCL.before();
}

A

B

Fig. 3. Component/aspect architecture for a Car Rental System (CRS)

414 M.M. Eler and P.C. Masiero

listed above. The connector shown (part B) is realized at the assembly phase
and links LoggingOpMgr to the SystemReservation component. The connector
defines the advices used (in this case, before and after, in the ICCL.before() and
ICCL.after() commands) and the operations to be crosscut.

The LoggingOpMgr’s code (Figure 2) is reused as it is in a Car Rental System,
whose component and aspect diagram is shown in Figure 3 (part A). The notes
used show that now only certain operations of the crosscutting interface have
added behavior. Absence of a note means that all of the operations are crosscut.
The connector’s code (Figure 3, part B) shows the LoggingOpMgr being reused
during the assembly phase for the CRS. The connector defines the advice (in this
case, before) and the operations that will be crosscut in the interface. Note that
the behavior of a crosscutting component does not change when is reused. What
changes is the execution of the crosscutting behavior before, after or instead
(around) the operations that will have their behavior enhanced.

4 Concluding Remarks

The approach presented also supports the design of functional crosscutting com-
ponents, not shown in the example. Implementation can also be done using other
languages like AspectJ, with some restrictions. For example: using JAsCO, it is
possible to change a connector dinamically, what is not possible with AspectJ.
Further work is going on to derive more generic designs for black box and white
box reuse of crosscutting components as well for crosscutting concerns that are
not fully orthogonal such as persistence.

References

1. Cheesman, J.; Daniels, J.: Uml components: A simple process for specifying
component-based software. Addison-Wesley, 2000.

2. Suvee, D.; Vanderperren, W.; Jonckers, V.: Jasco: an aspect-oriented approach tai-
lored for component based software development. In: AOSD, 2003, p. 2129.

3. Cottenier, T.; Elrad, T.: Validation of context-dependent aspect-oriented adapta-
tions to components. In: Workshop on Component-Oriented Programming, 2004.

4. Szyperski, C.; Gruntz, G. D.; Murer, S.: Component software - beyond object-
oriented programming. Addison-Wesley / ACM Press, 2002.

5. Clarke, S.; Baniassad., E.: Aspect-oriented analysis and design: The theme approach.
Addison-Wesley Professional, 2005.

6. Clements, P. C.: From subroutines to subsystems: Component based software de-
velopment. American Programmer, v. 6, n. 11, 1995.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 415 – 418, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Improving Reuse of Off-the-Shelf Components with
Shared, Distributed Component Repository Systems

Glêdson Elias, Jorge Dias Jr., Sindolfo Miranda Filho,
Gustavo Cavalcanti, Michael Schuenck, and Yuri Negócio

COMPOSE – Component Oriented Service Engineering Group
Informatics Department, Federal University of Paraíba

João Pessoa, PB, Brazil, 58059-900, (+55 83) 3216.7093
{gledson, jjjunior, sindolfo, gustavo, michael,

yuri}@compose.ufpb.br

Abstract. The task of identifying software components that meet business
requirements is a challenging issue in component-based development processes.
In such a context, component repository systems can provide the means to
effectively find suitable components, improving reuse of off-the-shelf software
components. This paper presents a shared, distributed component repository
architecture for large scale deployment of commercial and open source software
components. The proposed architecture adopts a service-oriented approach in
order to achieve a high degree of availability and reliability. Besides, the
proposed architecture also deals with issues such as security, component
certification and business models.

1 Introduction

Component repository systems have been proposed to solve problems related to
discover suitable components in Component Based Software Engineering (CBSE). A
component repository system acts as a process interface, where producers can register
components (development for reuse) and consumers can search and retrieve them
(development with reuse). Despite their contributions, present-day component
repository systems [1][4][6][7] have failed in establishing a global, distributed
component marketplace. Generally, such solutions adopt local and centralized
approaches [5], suffering from problems related to limited accessibility, availability,
reliability and scalability.

In order to overcome such limitations, this paper presents a shared, distributed
component repository architecture for large scale deployment of software
components. On the one hand, the proposed architecture is said to be shared because
several producers can register software components in a compliant implementation.
On the other hand, the proposed architecture is said to be distributed because a
compliant implementation ought to be based upon a set of geographically dispersed
entities who work together to provide the repository services. The proposed
architecture adopts a service-oriented approach, in which a collection of loosely-
coupled, self-contained services communicate and collaborate with each other in

416 G. Elias et al.

order to support requirements of a component repository, such as component
certification, business model and component discovery.

The remainder of this paper is organized as follows. In Section 2, an overview of
the proposed architecture is presented, identifying its high-level collaborating
services. Then, Section 3 presents some concluding remarks.

2 Architectural Framework

The proposed architecture adopts a service-oriented approach, in which four loosely-
coupled, self-contained services communicate and collaborate with each other
through well-defined interfaces. Such an approach allows the design and
implementation of each service to be performed in an autonomous way, provided that
an agreement exists on the communication technology. Figure 1 illustrates the
architectural framework.

Fig. 1. High-level architectural framework

The repository service is a distributed component library responsible for managing
the registration, storage and retrieval of software components. Components of several
component models are maintained by the repository service, such as CORBA, COM,
EJB and .NET. In this sense, it explores a uniform XML-based representation model,
called X-ARM [2], used to describe the features of the components. These features
include aspects related to naming schema, business model, certification, classification,
evolution, development processes.

The repository service can interact with one or more certification services, which
are implemented by distinct certification entities in order to manage the emission and
validation of component and producer certificates. The component acquisition in
conformance with business models specified by their producers is managed by one or
more broker services. Finally, the indexing and search of components are made by
search services, which can employ their own indexing algorithms and query
languages. Note that certification, broker and search services can be implemented by
any entity interested in provide such services. In this sense, these services must agree
with a set of predefined interfaces, provided by the repository service.

The toolbox is composed of a set of reuse-driven automated tools that can be
employed by producers, consumers, certification authorities and component brokers.
Such tools also interact with lower-level services through well-defined interfaces and,
as illustrated in Figure 2, can be categorized in development, integration and
management tools.

 Improving Reuse of Off-the-Shelf Components 417

Despite the adoption of a layered style, it is important to emphasize that the set of
services follows a service-oriented approach, in which a mesh of collaborating
services interact through a service bus that supports and manages the message flow
between them. Figure 2 illustrates the service-oriented view of the architectural
framework.

Repository
Service

Certification
Service

Broker
Service

Search
Service

Service Bus

Development
Tools

Integration
Tools

Management
Tools

Fig. 2. Service-oriented view

As an implementation issue, the set of services can be viewed as a special-purpose
middleware, in which the service bus is implemented by a communication service. By
following a middleware approach, it is possible to facilitate communication and
coordination, and besides, to mask heterogeneity and complexity, supporting well-
defined interfaces and standard protocols [3].

The repository service is composed of a set of distributed, inter-communicating
entities, called containers, which help to achieve scalability and support concepts of
name resolution, security and persistence. Internally, each container is also designed
adopting a service-oriented approach, whose services are organized into a three-
layered architecture, as shown in Figure 3.

C
o
n
t
a
i
n
e
r

Storage Persistence Service

Distribution Security Service
Directory Service

Access
Management Service

Producer Service
Consumer Service
Business Service

Fig. 3. Container layered architecture

The access layer provides services accessed by the container manager, zone
administrator, consumer and broker service. These actors use such services in order to
manage the container; store, change and retrieve components; retrieve free
components and retrieve non-free components, respectively. The distribution layer is
accessed by the services of the access layer and addresses distribution and security
issues, making possible to transparently discover and securely retrieve stored
components. Finally, the storage layer deals with physical storage of components.

Each container can store components of different component producers. Therefore,
each producer company registered in a container has an associated zone, which stores
families of products and can have several developers allowed. As the number of

418 G. Elias et al.

components can continuously grow, a zone can be divided into domains. This way,
both zones and domains are able to store components and to have registered domains
and subzones. The difference is that zones also store the administrative information
about the producer company, including the developers authorized to manipulate the
components in their zones and respective domains.

Moreover, the existence of zones and domains enables the unambiguous
identification of components. In this sense, the repository service adopts a hierarchical
naming schema, as suggested by Elias [8]. In such a schema, names are organized in a
hierarchical tree, where the leaves are components and the internal nodes are zones
and domains, representing component producers.

3 Conclusion

The proposed architecture combines various important features to the infrastructure of
component repository systems, including global naming schema, distribution,
scalability and security. In addition, the proposed architecture is unique since it
provides facilities for dealing with component certification and business models.

This paper is a step towards the realization of the quite ambitious goals of
promoting a ubiquitous and competitive component marketplace, possibly composed
of an enormous quantity and variety of off-the-shelf, third-party, reusable
components. It represents the preliminary results of our work, which is far from being
completed. Thus, several work remains to be done, including concluding a proof of
concept prototype, which is currently under laboratory work.

References

1. Component Source. http://www.componentsource.com. 2005.
2. Elias, G.; Schuenck, M.; Negócio, Y.; Dias Jr., J.; Mirando Filho, S. X-ARM: An Asset

Representation Model for Component Repository Systems. SAC 2006 – The 21st ACM
Symposium on Applied Computing. Dijon, France, 2006. (to appear).

3. Emerich, W. Software Engineering and Middleware: A Roadmap. Proceedings of the
Conference on The Future of Software Engineering, 2002.

4. Inoue, K.; et al. Component Rank: Relative Significance Rank for Software Component
Search. In ICSE, pages 14 24, Portland, OR, 2003.

5. Seacord, R. C. Software engineering component repositories. Technical Report, Software
Engineering Institute (SEI), 1999.

6. Seacord, R.; Hissam, S., Wallnau, C. Agora: A Search Engine for Software Components.
CMU/SEI-98-TR-011, 1998.

7. Ye, Y. Supporting Component-Based Software Development with Active Component
Repository Systems. Phd Thesis, University of Colorado, 2001.

8. Elias, G. SOS, A Framework for Distribution, Management and Evolution of Component-
Based Software Systems over Open Networks. Phd Thesis, CIn-UFPE, Recife, Brazil. 2002.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 419 – 422, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Support to Development-with-Reuse in Very Small
Software Developing Companies

José L. Barros1 and José M. Marqués2

1 University of Vigo, CS Department, Spain
jbarros@uvigo.es

2 Universidad de Valladolid, CS Department, Spain
jmmc@infor.uva.es

Abstract. There are a variety of specifications to represent information about
reusable assets. Most of this models and specifications are complex, difficult to
understand and implement in reduced environments. Small and very small
organizations (less than 10 employees) can benefit from reuse but, they need
easy to understand methodologies, processes and tools; low cost technologies
and, flexible development models. We provide a flexible approach to the
modelling process proposing an easy model to represent and classify reusable
assets, mainly those developed inside the organization but, compliant with
standards to allow the use of COTS. Our model deals with functional and non-
functional properties and, it’s able to represent assets from the whole software
development life cycle.

1 Introduction

Industry has a variety of good, standard models to represent software components and
reusable assets. Some of them, including EJB, COM and its descendants (COM+,
DCOM), CORBA, UML, MOF and RAS are supported by well-known, leading
organizations and tool vendors, like IBM, OMG, SUN, HP and many others [1].
Many of this models and specifications were developed thinking in big software
development organizations. These organizations have a well defined environment for
producing software: established methodologies, business rules and policies, consistent
quality practices, and enough human and technical resources. Obviously, they also
have enough economic resources for buying development tools. On the other hand,
there are a lot of small and very small companies (VSC) devoted to the production of
software applications. These companies have special characteristics which different-
tiate them from big software factories.

VSC’s methods tend to be very ad-hoc. The developers worked in the way that
they found most suitable, and used to change that way when new tools and/or
methodologies were learned. Communication between the developers tends to be
informal. They kept only one version of their product, to which they made all the
changes. The development process is adapted for every new project. Work was based
very much on customer requests, when a new customer was obtained additions to the
product were made, if necessary, to cater for the new requirements. Little or no
documentation was kept on the software, apart from the user manual [2].

420 J.L. Barros and J.M. Marqués

Economic issues can be reduced provided that free, probably open source software
tools are used. Moreover, the intrinsic benefits from reuse: reduce time to market and
increase quality; should help to reduce expenses and increase benefits. Complex
models to represent reusable assets can be shortened and simplified in order to adapt
them to VSC’s environments [3].

The paper is divides as follows: section 2 details de proposed development
processes; section 3 shows the proposed model for representing reusable assets;
section 4 deals with the clustering technique used to classify reusable assets and group
them together into similarity sets called finders; finally, section 5 presents the
conclusions and open issues for future research.

2 Development Processes

We focused our efforts in highlight some characteristics that we found especially
interesting for VSC’s, while they can be also desirable for other kinds of
organizations:

 Improve development speed (Rapid Application Development)
 High visibility should be guaranteed (show progress)
 Allow changes on requirements along the development life cycle
 It is also desirable that a high percentage of tasks can be fully automated or at

least has a sound tool support.

In order to achieve these goals we proposed methods and techniques similar to
those presented in [4]. The steps to follow in the developing of new applications
should be something like:

 Elicit requirements, using as many techniques as possible
 Search the Reuse Repository for reusable assets (mainly Models)
 Develop Models, adapting the retrieved ones or creating them from scratch,

until the client is fully satisfied
 Automatic generation of functional deliverables (using tool support)

These steps can (and should) be repeated as many times as necessary. In our
approach all the artefacts produced during software development were or can be
treated as XML documents (text, models, diagrams, code, data files) allowing XML-
based storing and retrieval mechanisms [5]. We enforce the use of the OpenDocument
format, which can represent a variety of software [6]. All developed artefacts should
be evaluated and possibly included in the repository.

3 Information Model

We need a homogeneous representation for every possible software artefact, so the
same set of properties should always apply. We have divided the set of properties
which represent the real artefact in two halves: functional and non-functional
properties. The representation of every reusable asset will be a well-formed XML
document called Reusable Asset Description (RAD). RAD documents are stored in a

 Support to Development-with-Reuse in Very Small Software Developing Companies 421

native XML repository [7]. The set of properties in the Administrative Description
(AD) were extracted from a deep analysis of well documented component models
from the Reuse arena, such as: SIB [8], REBOOT [9], MECANO [10], RSHP [11]
and RAS [12]. The next figure shows valid Reusable Assets (RA).

Fig. 1. Valid Reusable Assets

The Functional Description (FD) properties were similar to those proposed in [13].
A FD is an unbounded set of features which in turn were made of triplets <action-
object, importance>. A FD can be seen just as a collection of properties, statically
associated with a reusable component, or as a collection of requirements (a query
dynamically associated to a developer). So a FD is both a classification and a retrieval
mechanism. Both, A+F descriptions can be semi-automatically extracted from
XML/XMI documents, produced from the original reusable asset. The next step is to
classify an insert the RAD into the reuse repository.

4 Classification

In order to classify a RAD document we need to define and compute replacement
capability between two RAD. Only the FD of the two RAD will be used for this
computation. Replacement capability can be defined as the probability that the
reusable asset represented by FD1 can be substituted by the reusable asset represented
by FD2, while keeping the application requirements satisfied. FD1 can represents a
user’s query or another RAD in the repository. Replacement capability is computable
only by direct comparison (non-transitive, non-symmetric). The next step is to assign
an incoming FD to a finder, the formal definition of a finder is:

“A finder is a set of similar functional descriptions”

Every finder has an associated FD (Finder Functional Description, FDD) which is
constructed dynamically, adding all the features present in the FDs that belongs to
that finder. This FDD can be seen as a nucleus or mass centre that represents all the
functionality (without duplicates) offered by the set of FDs that belongs to the finder.
When a new FD arrives we compute its similarity with respect to all the FFDs in the
repository, the incoming FD is assigned to the finder whose FDD is most similar to it.
A threshold value could be applied to fine tuning the granularity of the repository

422 J.L. Barros and J.M. Marqués

(number of finders) and, of the RA (mean number of DF per finder, we call this
density).

5 Conclusions and Open Issues

The model can be expanded or configured to adapt it to the organization’s needs. The
FDD can be seen as a good guideline to develop new RA, from a development-for-
reuse perspective. The classification space is generated automatically and, dynamo-
ically. No human intervention is needed, reducing effort. The reuser can query the
repository directly, by properties in the AD section, or using the FD, this allow users
with different knowledge about the assets to use the repository. Furthermore, a user
can use an UML diagram as a query, the system will retrieve all RAD related with the
diagram, not only diagrams. A thesaurus can be automatically generated from FDDs,
extracting its <action-object> pair of terms. A manual tuning of this thesaurus could
be necessary.

References

1. Brereton, P., Linkman, S., Boegh, J., Thomas, N., De Panfilis, S.: “Software Components
– Enabling a Mass Market”, Proc. Of the 10th Int’l Workshop on Software Technology
and Engineering Practice, 2002.

2. Fayad, M.E., Laitinen, M., Ward, R.P.: “Software engineering in the small”,
Communications of the ACM, 43(3), pp.:115-118, March 2000.

3. González, R., Meer, K.: “Standard metadata applied to software retrieval”, JIS, 30(4),
pp.: 300-309, 2004.

4. McConnel, S.: Rapid development. McGraw-Hill, 1996.
5. Laird, C.: “XMI and UML combine to drive product development”,
6. http://en.wikipedia.org/wiki/OpenDocument_technical_specifications
7. http://www.sleepycat.com/
8. Constantopoulos, P., Dörr, M.: “Component Classification in the Software Information

Base”, Object-Oriented Software Composition. O. Nierstrasz and D. Tsichritzis (Eds),
Prentice Hall, pp 177-200, 1995.

9. Karlsson, E.A.: “Software Reuse: A Holistic Approach”, John Wiley & Sons, 1996.
10. García, F.J., Marqués, J.M., Maudes, J.M.: “Mecano: Una Propuesta de Componente

Software Reutilizable”, II Jornadas de Ingeniería del Software, Donostia-San Sebastián,
pp. 232-244, 3-5 Septiembre, 1997.

11. Lloréns, J., Morato, J., Genova, G., Fuentes, M., Quintana, V., Díaz, I.: “RSHP: An
information representation model based on relationships”, In Ernesto Damiani, Lakhmi C.
Jain, Mauro Madravio (Eds.), Soft Computing in Software Engineering (Studies in
Fuzziness and Soft Computing Series, Vol. 159), Springer, pp. 221-253, 2004.

12. http://www.omg.org/technology/documents/formal/ras.htm
13. Barros, J., Marques, J.: Conglomerados Multidimensionales: Un mecanismo simple de

organización de Elementos Software Reutilizables. JISBD’02, Madrid, Noviembre, 2002.
pp.: 375-386.

A Simple Generic Library for C

Marian Vittek1, Peter Borovansky1, and Pierre-Etienne Moreau2

1 FMFI, Comenius University, Mlynska dolina, 842 15 Bratislava, Slovakia
{vittek, borovan}@fmph.uniba.sk

2 LORIA-INRIA, BP 239, 54506 Vandœuvre-lès-Nancy, France
moreau@loria.fr

Abstract. This paper presents Sglib, a C library freely inspired by the Standard
Template Library (STL). In opposition to C++, the C language lacks any support
for generic programming. Our library results from the idea to create a generic
library of reusable algorithms through the C preprocessor1.

1 Introduction

Generic libraries, like Standard Template Library (STL) [6, 7] define algorithms inde-
pendently on particular base type. They allow to efficiently reuse non-trivial algorithms
in a variety of projects. While there is a language support for generic programming in
Ada, C++ or Java, the pure C seems to be incompatible with generic programming par-
adigm. Fortunately, the standard C preprocessor provides a limited framework allowing
to define algorithms in a generic way. In this paper we present an experiment on how
to build a generic library based on the preprocessor. As the result of our work we have
implemented a prototype called Sglib, standing for Simple Generic Library.

A particularity of our library is that it does not operate on its own representation
of data structures. Sglib provides algorithms, not data types. As explained later in the
paper, for example, algorithms for sorting lists can be applied on any user defined data
structure containing a pointer to the same type. Thanks to this, Sglib can be used in
ongoing projects on their own existing data representations.

Sglib is not a result of a self standing research. Our interest on the subject comes
mainly from the research on C/C++ source understanding and transformation systems
[1, 5, 9, 10]. The idea to create Sglib comes from a combination of those knowledges
with our previous interest in algebraic and term rewriting languages [4, 8], especially
ELAN [2]. From the latest we know that many generic constructions are implemented
via preprocessors. When working on the refactoring browser we have realized that the
C preprocessor is sufficiently strong to allow implementation of a usable generic li-
brary. We have considered the idea worth of an effort also because the C language is
continuously placed among the most popular languages of open source projects [3].

2 Design of Sglib

Every C programmer probably knows a macro allocating a memory cell for a given
type:

1 This work was supported by Agency for Promotion Research and Development under the
contract No. APVV-20-P04805.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 423–426, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

424 M. Vittek, P. Borovansky, and P.-E. Moreau

#define ALLOC(X) ((X *) malloc(sizeof(X)))

This macro is parametrized by a type X and it expands to a call of the function
malloc allocating as many bytes as many needed for storing the type X. The function
malloc returns a pointer of type void *, and the macro also casts this result to the
pointer to X.

The macro ALLOC is perfectly working and useful. It is a good example how to use
the preprocessor in generic constructions. We can extrapolate this approach. Macros
parametrized by types can be used to create a whole library of algorithms. Implementa-
tion of this idea led us to the first version of Sglib. Unfortunately, macros are too weak to
implement recursive algorithms. Also for this reason, the original idea has been refined
into implementation of a second part of the library, where macros are used to generate
(better said instantiate) real, possibly recursive, C functions. We call those two parts of
Sglib respectively the level-0 and level-1 user interface.

2.1 The level-0 Interface

As pointed before, the very first idea was to implement the library simply as a col-
lection of macros. There are several security questions which need to be posed before
creating/using a library of such macros. Preprocessor macros are expanded on purely
textual level. If used without moderation, they can be source of bugs. Fortunately, if
macros are well written, they can eliminate majority of problems. Sglib adopts several
conventions. All macro parameters are enclosed into parenthesis eliminating the dan-
ger of syntax misunderstanding. Sglib avoids multiple occurrences of macro parameters
whenever possible. Finally, in order to reduce possible name clashes, all variables de-
fined inside macros are starting and finishing with _ (underscore). As an example, let
us take a macro computing the length of a list:

#define SGLIB_LIST_LEN(type, list, next, result) { \
int _i_; \
type _l_; \
for(_i_=0,_l_=(list); _l_!=NULL; _l_=_l_->next, _i_++) ; \
(result) = _i_; \

}

This implementation can be used on any user defined list data structure and there
is only a small risk of wrong parsing when using it. Sglib provides a large number of
macros like the one above.

2.2 The level-1 Interface

Because macros do not permit to define recursive algorithms, we started to search an
alternative design pattern for the so called level-1 interface of Sglib. We have examined
a number of design patterns for this part of the library, including X-macros. Finally, we
have adopted a solution where Sglib defines one very large macro for each supported
data structure. The macro is expanded into definitions of all functions (algorithms) op-
erating on the given data type. For example, a macro implementing lists looks like:

A Simple Generic Library for C 425

#define SGLIB_DEFINE_LIST_FUNCTIONS(LIST_TYPE) \
... \
int sglib_list_len(LIST_TYPE *list) {\
int i = 0;\
LIST_TYPE *l;\
for(l=list; l!=NULL; l=l->next) i++;\
return(i);\

}\
...

In other words, the level-1 interface implements all algorithms in form of functions,
however, those functions are not directly a part of the goal program. They are defined
inside generic macros. The program can incorporate those functions by invoking such
macro parametrized by the actual data type and few additional parameters.

A small refinement of the above example is required for the final version of the li-
brary because of a problem with function name clashes. The problem appears if the user
needs to use two different list types in a single program. In such case he will invoke the
macro twice, which will result in two definitions of the function sglib_list_len
(with different parameter type) causing a ’double definition’ linker error. In order to
solve the problem, we use the type name (supposing that it is a single identifier) and we
compose it into function names using the preprocessor operator ##. For example, the
final implementation of lists looks like:

#define SGLIB_DEFINE_LIST_FUNCTIONS(LIST_TYPE,COMPARATOR,NEXT) \
... \
int sglib_##LIST_TYPE##_len(LIST_TYPE *list) {\
int i = 0;\
LIST_TYPE *l;\
for(l=list; l!=NULL; l=l->NEXT) i++;\
return(i);\

}\
...

In the example, the NEXT parameter has the same meaning as in the level-0 interface
and the COMPARATOR parameter is a function (or macro) used to compare two elements
of a list. Comparator is used by functions sorting lists, etc. Using the level-1 interface
in praxis means, that the user invokes one large macro at the beginning of his program.
This macro instantiates all available functions for the given type and they can be later
used in the program as regular C functions. For example an invocation:

SGLIB_DEFINE_SORTED_LIST_FUNCTIONS(ilist,ilist_comparator,next)

is expanded into functions computing the lenght of an ilist (sglib_ilist_len),
sorting it (sglib_ilist_sort), etc.

At this time, Sglib implements following data structures: lists, sorted lists, double
linked lists, hashed containers and red-black trees. The whole library is implemented
as a single header file and it does not have any binary part. The complete list of macros
and functions provided by each interface is beyond the scope of this paper. Majority

426 M. Vittek, P. Borovansky, and P.-E. Moreau

of functions and macros implements operations on container data structures. For each
container structure, the library provides the same basic set of functions for respectively
adding, removing and finding an element and functions for iterating over elements. The
uniform API allows users to easily altern between different actual implementations. Of
course, for each data structure there is also a number of functions specific for given
type, such as concatenation, or reverse for lists, etc.

3 Conclusion

At this moment, Sglib consists of around 2000 lines of code inside the library itself and
of further 2000 lines of testing programs. The library contains also around 5000 lines
of documentation. The whole library is open sourced, freely redistributable and usable
in both commercial and free programs without a charge. It is available at the address
http://sourceforge.net/projects/sglib.

References

1. Ira Baxter, Christopher Pidgeon, and Michael Mehlich. Dms: Program transformation for
practical scalable software evolution. In Proceedings of ICSE 2004: International Confer-
ence on Software Engineering, Edinburgh, Scotland, 2004. IEEE Computer Society Press.

2. P. Borovansky, C. Kirchner, H. Kirchner, P. E. Moreau, and M. Vittek. ELAN: A logical
framework based on computational systems. In Proc. of the First Int. Workshop on Rewriting
Logic, volume 4. Elsevier, 1996.

3. A. Capiluppi, P. Lago, and M. Morisio. Characteristics of open source projects. In Proc-
ceedings of the seventh European Conference on Software Maintenance and Reengineering,
Benevento, Italy, pages 317–330. IEEE Computer Society Press, 2003.

4. M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and J. F. Quesada. The
maude system. In Proceedings of the 10th International Conference on Rewriting Techniques
and Applications, pages 240–243, 1999.

5. A. Garrido and R. Johnson. Analyzing multiple configurations of a c program. In Proc-
ceedings of IEEE International Conference On Software Maintenance, Budapest, Hungary,
2005.

6. P.J. Plauger, Meng Lee, David Musser, and Alexander A. Stepanov. C++ Standard Template
Library. Prentice Hall PTR, 2000.

7. A. A. Stepanov and M. Lee. The Standard Template Library. Technical Report X3J16/94-
0095, WG21/N0482, Hewlett-Packard Laboratories, 1994.

8. Mark van den Brand, Arie van Deursen, Jan Heering, H. A. de Jong, Merijn de Jonge, To-
bias Kuipers, Paul Klint, Leon Moonen, Pieter A. Olivier, Jeroen Scheerder, Jurgen J. Vinju,
Eelco Visser, and Joost Visser. The asf+sdf meta-environment: A component-based language
development environment. In Proceedings of the 10th International Conference on Compiler
Construction, pages 240–243, 2001.

9. Laszlo Vidacs, Arpad Beszedes, and Rudolf Ferenc. Columbus schema for c/c++ preprocess-
ing. In 8th European Conference on Software Maintenance and Reengineering, Tampere,
Finland, pages 75–84. IEEE Computer Society, 2004.

10. Marian Vittek. A refactoring browser with preprocessor. In Procceedings of the seventh
European Conference on Software Maintenance and Reengineering, Benevento, Italy, pages
101–111. IEEE Computer Society Press, 2003.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 427 – 431, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Eliciting Potential Requirements with Feature-Oriented
Gap Analysis*

Sangim Ahn and Kiwon Chong

Department of Computing, Soongsil University
1 Sangdo-5Dong, Dongjak-Ku, Seoul, Korea 156-743

{siahn69, chong}@ssu.ac.kr

Abstract. Software reuse has long been paid attentions as an effective way to
improve software quality and productivity. In the context of Requirements
Engineering (RE), a reuse approach is effective in particular because it can help
to define requirements and to anticipate requirements change. We propose a
feature-oriented gap analysis method to elicit potential requirements from
various stakeholders. We use feature modeling, which are an important concept
in software product line, to identify reusable requirements elements. To achieve
our goal, we present (1) a meta-model of reusable requirements elements, (2)
gap analysis between new collected requirements and reused requirements in
the repository, and (3) a potential requirements elicitation process with feature-
oriented gap analysis. This process is a set of sequential procedures to elicit
potential requirements in addition to users’ Plus minus interest (PMI).

1 Introduction

There are many reasons for project failure. The main ones related to requirements are:
(1) Many users don’t define correctly what they want. (2) Requirements are changing
frequently. (3) There is no enough time to analyze user requirements. (4) Developers
don’t understand perfectly user requirements. These reasons make over time and cost of
projects, and low quality of software products. Therefore, establishing good
requirements is important in initial software development phase. The introduction of
reuse in software development aims at reducing development costs and improving
quality. More and more works try to integrate it throughout the whole cycle of
production, from the phase of requirements expression to the phase of maintenance. In
the context of Requirements Engineering (RE), reuse is effective in particular because it
can help to define requirements explicitly and to anticipate requirements change [1][2].

We propose feature-oriented gap analysis to elicit potential requirements from
various stakeholders. Since requirements specification is not suitable for
representation in a computer, we use feature modeling, which are an important
concept in software product line, as a reusable requirements element. The element is
requirements representation formalization that can compare new collected
requirements to reused requirements. New collected requirements are made based on
a preliminary method such as user interview, workshops, and observing user work.

* This work was supported by the Soongsil University Research Fund.

428 S. Ahn and K. Chong

Whereas, reused requirements are stored in the repository. In this paper, we suppose
that the repository is already installed and valuable requirements of many successful
projects are accumulated in the repository. We define a meta-model of reusable
requirements elements using feature modeling, present gap analysis between new
collected requirements and reused requirements in the repository, and show a
potential requirements elicitation process including users’ Plus minus interest (PMI).

2 A Meta-model of Requirement Elements

The major point of our approach is to model requirements elements for representation
of new collected requirements and reused requirements in the repository. Intuitively, a
gap expresses a difference between these elements such as deletion, addition, and
equal. In order to facilitate gap analysis, we need to define requirements elements and
a set of gap types related to these elements.

A meta-model of requirements elements is drawn in Figure 2 using UML notations.
These elements are composed of feature categories [3][4]. Every element has a Name
and each element is characterized by a set of Property which is mapping to factors in
feature categories. There are two orthogonal classifications of Element in the meta-
model. The first classification makes the distinction among Capability, Operating
Environment, Domain Technology, Implementation Technology Feature. The second
classification is a partition of elements into Relationship and NoRelationship. The type
Relationship is a connection between two elements, one being the Source and the other
the Target. It means that there are semantic relationship between both of them such as
dependency, association, and generalization. Elements, which are not connected, are
referred to as NoRelationship [5].

Fig. 1. The meta-model of requirements elements for gap analysis

3 Gap Analysis

There are three major types of difference: category difference, property difference,
and operator difference. The gap types are composed of a set of operators applicable

 Eliciting Potential Requirements with Feature-Oriented Gap Analysis 429

to elements. Each operator identifies a type of difference between new collected
requirements and reused requirements in repository. For example, if Modify is an
operator, it implies that there is the name difference in Service property of Capacity
Element [5].

 Element difference is defined with the category of requirements element.
They only affect the way users want to refer to requirements.

 Property difference is defined with the factors in one of elements. They only
affect the intention that users want to refer to an element.

 Operator difference are the most important as they correspond to express
difference of the set of elements which composes requirements.

Table 1. Gap types of elements

Element Property Operator Description of operators
C-Service Add New element is add in new collected R.E.

C-Operation Delete Element is disappeared in new collected R.E.

C-Non-Functio
nal

Merge Elements are merged in the repository

O-Interface Split Elements are split in the repository

O-Platform Modify Elements are modified in the repository

C.
O.E.
D.T.
I.T.

D-Specific
I-Design
I-Decision

 Equal Elements in the repository are same

 *C.-Capacity. O.E.-Operating-Environment, D.T.-Domain Technology, I.T.-Implementation Technology

The definition of each gap analysis is composed of a source and a consequence.

The source identifies the status of the elements involved in the new collected
requirements and in the reused requirements. The consequence is specifying
difference between the new collected requirements and the reused requirements in
repository. Therefore, the consequence helps user to established good requirements.
After gap analysis is finished, we can get three sets of requirements such as
<requirements considered>, <requirements new added>, and <requirements not
considered>.

4 Requirements Elicitation Process

The potential requirements elicitation process starts with the construction of the new
collected requirements. The refinement mechanism of requirements element is used as
a means to analyze gaps at different levels in details. The process continues until
developers and users affirm the refined requirements to be acceptable. Through the
refinement process, the gap granularity issue is handled. More precisely, the process
for eliciting requirements is an iterative one as follows:

430 S. Ahn and K. Chong

Fig. 2. The process to elict potential requirements

The five steps are carried out in a participative manner. This allows the
consideration of different viewpoints with the aim of reconciling them cooperatively,
in the construction of the new collected requirements’ elements as well as in the
refinement of gaps. Additionally, in step 4, users are given a gap report. Users can
decide to add or delete elements, and put their PMI(plus minus interest) in
requirements specification. Each iteration is related to activities which:

 First, system analysts gather requirements with general elicitation methods.
They make an initial requirement specification. Then, they construct elements
of the new collected requirements.

 Second, they look for similar elements in the reused requirement repository.
 Third, they analyze gap between the new collected requirements and the

reused requirements in the repository. Then, they give users a gap report.
 Fourth, they carry out the meeting with users to check the gap report. At that

time, users give analysts own opinion and analyst should reflect
users’PMI(plus minus interest) in the refined requirements specification.

 Finally, system analysts establish the refined requirements specification. If the
refinement is need, they carry out iteration from 1 to 5 again.

5 Conclusion and Future Works

We propose a method to elicit potential requirements from various stakeholders. To
achieve our goal, we firstly presented a meta-model of reusable requirements element
using feature modeling. Next, we generated requirements’ element using feature
categories and carried out gap analysis between the new collected requirements and
the reused requirements in the repository. The gap analysis is composed of a source
and a consequence. The source identifies the status of the elements involved in the
new collected requirements’ elements, and in the reused requirements’ elements. The
consequence is specifying difference between requirements’ elements. Also, we
presented the potential requirements elicitation process with gap analysis. This
process is sequential procedures to look for potential requirements in addition to
users’ Plus minus interest(PMI). This can reduce requirements changes and reduce
time or cost problem corresponding uncertain requirements.

 Eliciting Potential Requirements with Feature-Oriented Gap Analysis 431

We are conscious of the lack of consideration related to definition of operators and
handling of complex operators such as merge and split. In addition, association
conditions between elements should be analyzed in details during the gap elicitation
process. These are considered in the further steps of our research.

References

[1] Ian F. Alexander and Richard Stevens, Writing Better Requirements, Addison Wesley, 2002.
[2] Ounsa Roudiks, Mounia Fredj, “A Reuse Based Approach for Requirements Engineering,”

IEEE, 2001.
[3] Jacob L. Cybulski1 and Karl Reed2, “Requirements Classification and Reuse:Crossing

Domain Boundaries,” LNCS 1844, pp. 190-210, 2000.
[4] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moonhang Huh,

“FORM: A Feature-Oriented Reuse Method with Domain-Specific Reference
Architectures,” Annals of Software Engineering, 5, pp. 143-168, 1998

[5] Colette Rolland, Camille Salinesi, and Anne Etien, “Eliciting gaps in requirements
change,” Requirements Eng(2004) 9:1-15, 2004.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 432 – 435, 2006.
© Springer-Verlag Berlin Heidelberg 2006

X-ARM: A Step Towards Reuse of Commercial
and Open Source Components

Michael Schuenck, Yuri Negócio, Glêdson Elias,
Sindolfo Miranda, Jorge Dias Jr., and Gustavo Cavalcanti

COMPOSE – Component Oriented Service Engineering Group
Informatics Department, Federal University of Paraíba

João Pessoa, PB, Brazil, 58059-900, (+55 83) 3216.7093
{michael, yuri, gledson, sindolfo, jjjunior,

gustavo}@compose.ufpb.br
http://www.compose.ufpb.br

Abstract. In component-based software development processes, one of the
most challenging tasks is to find reusable assets that fulfill the requirements of a
particular software system under development. Over time, in the context of
component repository systems, reusable asset specification approaches have
been proposed to help find suitable reusable assets. As an important step
forward, RAS (Reusable Asset Specification) provides a standard way to
describe all kinds of software assets. However, despite its contributions, RAS
suffers from problems related to fine-grain reuse. Besides, RAS does not
provide representation for asset certification and business models. As another
step forward, this paper presents X-ARM, an XML-based Asset Representation
Model, specified as a RAS extension and organized in four hierarchical profiles.
The proposed model overcomes RAS limitations, providing effective means for
developing universal repository systems that can improve reuse of commercial
and open source software components.

1 Introduction

The large scale adoption of Component-Based Development (CBD) is limited to the
existence of an active marketplace that enables the component exchange between
different system developers and component developers. Such a context is required in
order to help find suitable reusable components that fulfill the requirements of
particular software systems under development. In order to overcome this limitation,
some open and proprietary component repository systems [1] have been proposed by
industry and academia.

According to [2] and [3], repository systems must store not only software
components, but also metadata describing them. Such metadata provide information
used by search engines to index and classify the components and then, to allow
consumers to search and retrieve the adequate components required by the
construction of their applications. The component metadata must be described in a
unambiguous language and can represent several kinds of component characteristics,
including: the component purpose, what component model it follows, what interfaces

 X-ARM: A Step Towards Reuse of Commercial and Open Source Components 433

it provides and depends on, what events it fires and catches, what other components
compose it, what related assets it has, what is the development process in which it was
generated, what quality certification it has, who has certified it, who can retrieve it,
and so on.

An important initiative towards the definition of a reusable asset description model
is the Reusable Asset Specification (RAS) [4]. Such model describes the assets
metadata as XML documents and adopts the use of profiles, which are extensions to
the core specification to represent features of particular asset types. Although it
defines three profiles, they are not enough to represent all characteristics of main asset
types required by a CBD-centric component repository. Moreover, RAS profiles do
not focus on fine-grain reuse. For instance, interface and component specifications are
not reused among different component implementations.

In such a context, this paper presents a model called X-ARM, an acronym for
XML-based Asset Representation Model. It has the aim of semantically describe all
kinds of software assets that can be stored in a component repository system,
including software components. The proposed model is an extension of RAS, divided
into four profiles that allow the description of distinct types of software assets.

The remainder of this paper is organized as follows. In Section 2, we present the
X-ARM in terms of profiles and the asset types defined by each profile. Section 3
presents some concluding remarks.

2 X-ARM

A prior X-ARM version was originally presented in [5] as an independent model.
However, we decided to develop a new version of X-ARM, adapting it to be a RAS
extension, since RAS Default Profile defines the basic characteristics to the X-ARM
goals, such as asset identification, classification, related assets and files that compose
the asset [4]. Moreover, RAS is a standard proposed by OMG, adopted by important
software enterprises.

X-ARM defines four profiles, created in order to separate concepts, split
complexity and improve the reusability of the different asset types. In order to
illustrate such types, Figure 1 presents the X-ARM asset types, categorized according
to the profiles.

The X-ARM Artifact Profile inherits the RAS Default Profile elements. Since the
other X-ARM profiles are X-ARM Artifact Profile specializations, it represents the
basic features of all the asset types. In this sense, such a profile introduces elements to
represent information about: the development process adopted to construct the asset,
the adopted business models, the asset certification, the assets reused to construct the
specified asset, and the evolution history. Moreover, X-ARM Artifact Profile
describes four particular asset types. The X-ARM XML Schema is an asset type aimed
to store XML Schemas that describe the X-ARM profiles. The License type represents
usage licenses, which are reused by assets of other types that adopt those licenses. A
Producer certification describes the certification of the software process adopted by
specific producers. Resources describe any software artifacts other than the asset
types represented by the remaining profiles. It is important to note that, in the case of
X-ARM Artifact Profile, all asset types defined by it use the same XML elements.

434 M. Schuenck et al.

X-ARM X-ARM

Component Profile
Independent Component

Dependent Component

Component Implementation

Model Profile

Business Model

Certification Process

Development Process

Component Model

Application Areas

Artifact Profile
X-ARM XML Schema

License

Category

Type

Interaction Profile

Independent Exception

Dependent Interface

Independent Interface

Dependent Exception

Independent Event

Dependent Event

Producer Certification

Resource

Fig. 1. X-ARM asset types

The X-ARM Model Profile aims to standardize the values used to represent
particular features, enabling standard searches and comparisons between different
assets. It allows the representation of five asset types. The first one is development
process, which is used to specify, in terms of phases and outputs, the development
processes that can be employed to construct a system and, consequently, all its
compound assets. Since the component quality, reliability and functionality can be
certified by certifier entities [6], a certification process asset is responsible to identify
and describe the aspects verified by a component certification procedure and their
possible concepts. The business model type represents, in terms of characteristics and
their possible values, a negotiation model that can be adopted by distinct assets. The
component model type is used to indicate the elements and characteristics that
compose a component model, whose examples are CCM, JavaBeans and COM. Such
an asset type is described in terms of properties, provided and required interfaces, and
source and listener events. Specifying separate component model assets enables
descriptions of components in accordance with any component model and avoids the
creation of new Profiles. Finally, an application areas asset is employed to group a
set of application areas, hierarchically organized, used by other asset types to describe
and classify them.

The intent of the X-ARM Interaction Profile is to describe the structures used by
components to communicate with other components or applications. In this sense, it
defines elements to represent events, exceptions and interfaces. Each one is classified
as component model independent or component model dependent. On the one hand,
the model independent assets do not agree with a specific component model and, thus,
can be adopted by any independent component. On the other hand, the component
model dependent assets must attend the component model rules. For instance, a model
dependent description of a CCM interface must indicate a CIDL (CORBA Interface
Description Language) [7] file. This way, model dependent assets can indicate the
model independent assets they derived from and can be referenced by dependent
components.

Finally, the X-ARM Component Profile allows the representation of both
specification and implementation of components, adding the proper elements to
describe such asset types. The independent and dependent component assets describe
component specifications. They differ from each other because the former does not
take into account characteristics of a specific component model. Moreover, a

 X-ARM: A Step Towards Reuse of Commercial and Open Source Components 435

dependent component can indicate the independent component in which it is based on.
Besides, using X-ARM Component Profile it is also possible to represent component
implementations, which represents the documentation and the executable and source
codes. Such asset type must indicate the dependent component that it implements.

3 Conclusion

By exploring the proposed XML-based model, called X-ARM, a compliant
component repository system can provide effective means to store, discover and
retrieve assets with the expected functionality. X-ARM defines 18 distinct asset types
in order to represent with more adequateness the particular characteristics of each
type.

X-ARM allows assets to be reused under a variety of licenses and business models.
The representation of the business models to acquire an asset can consider several
characteristics and can indicate different license types and terms, described by distinct
assets. Moreover, X-ARM allows indicating both executable and source code of
components. Consequently, commercial, open source and free components may be
represented.

An X-ARM compliant asset packager is currently under construction, being
developed as an Eclipse plug-in. Future work should focus on the design and
implementation of a compliant component repository system, including approaches
for indexing mechanisms and search engines.

References

1. J. Guo, Luqui. A Survey of Software Reuse Repositories. 7th IEEE International Conference
and Workshop on the Engineering of Computer Based Systems, April 2000, pp. 92-100.

2. Orso, A.; Harrold, M. J.; and Rosenblum, D. S. Component Metadata for Software
Engineering Tasks. In Proc. 2nd International Workshop on Engineering Distributed
Objects (EDO 2000). Springer, Berlin, 2000, 126-140.

3. Sametinger, J. Software engineering with reusable components. Springer-Verlag New York,
Inc., NY, 1997.

4. OMG. Reusable Asset Specification – Version 2.2. 2005. http://www.omg.org/docs/ptc/
05-04-02.pdf (last access on November 02, 2005).

5. Elias, Glêdson; Schuenck, Michael; Negócio, Yuri; Dias Jr., Jorge; Miranda Filho, Sindolfo.
X-ARM: An Asset Representation Model for Component Repository. In: ACM SAC 2006 –
The 21st ACM Symposium on Applied Computing, Dijon, France. (to appear)

6. Szyperski, C.; Gruntz, D.; and Murer, S. Component Sofware: Beyond Object-Oriented
Programming. Second Edition, Addison-Wesley / ACM Press, 2002.

7. Object Management Group. The Common Object Request Broker: Architecture and
Specification. December 2001.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, p. 436, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Implementing Domain-Specific Modeling
Languages and Generators

Juha-Pekka Tolvanen

MetaCase
Ylistönmäentie 31, FI-40500, Jyväskylä, Finland

jpt@metacase.com

Domain-Specific Modeling (DSM) languages provide a viable solution for improving
development productivity by raising the level of abstraction beyond coding. With
DSM, the models are made up of elements representing concepts that are part of the
domain world, not the code world. These languages follow domain abstractions, and
semantics, allowing developers – and depending on the domain even end-users – to
perceive themselves as working directly with domain concepts. In many cases, full
final product code can be automatically generated from these high-level specifications
with domain-specific code generators.

This tutorial introduces DSM and looks at how it differs from modeling languages
like UML that focus more on the level of the code world. This is followed by real-life
examples of DSM from various fields of software product development. We will
illustrate language creation by analyzing 20+ real-world DSM cases. The main part of
the tutorial addresses the guidelines for implementing DSM: how to identify the
necessary language constructs; how to make the metamodel to formalize language
specification; and different ways of building code generation. Participants will be able
to try their hand and learn these skills in practice in group exercises.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, p. 437, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Metrics and Strategy for Reuse Planning and
Management

Bill Frakes1 and John Favaro2

1 Computer Science Department
Virginia Tech

wfrakes@vt.edu
2 Consulenza Informatica
john@favaro.net

Key to planning and managing a systematic reuse program is the formulation and
evaluation of a competitive strategy, and subsequent monitoring and measurement of
progress against the goals elucidated by that strategy.

This course provides a succinct introduction to software reuse metrics, and
principles of strategic planning and economic evaluation of reuse-oriented invest-
ments. The two parts of the course provide a comprehensive overview of current
practice and recent developments in reuse project planning and management.

Topics include an introduction to management of reuse projects, basic concepts
and terminology in reuse measurement, principles of strategy, and fundamentals of
economic evaluation of proposed investments in reuse.

This course shows senior managers, project managers, and planners,

• how and what to measure for meaningful reuse project management,
• the factors that influence a competitive strategy for reuse,
• the most effective traditional and recent approaches to economic evaluation

of reuse projects.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, p. 438, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Building Reusable Testing Assets for a
Software Product Line

John D. McGregor

Clemson University
Clemson, SC USA 29634

 johnmc@cs.clemson.edu

Testing consumes a significant percentage of the resources required to produce
software intensive products. The exact impact on the project is often hard to evaluate
because testing activities are distributed over the entire scope of the development
effort. In this tutorial we take a comprehensive end-to-end view of the testing
activities and roles that should be present in a software product line organization.

The Software Engineering Institute (SEI) identifies three areas of responsibility in
a product line organization we relate these to testing:

• Organizational managers have responsibility for establishing the test strategy for
the organization in general and the product line in particular. These activities are
directly related to the business goals and scope of the product line.

• Technical managers have responsibility for planning the numerous test activities
needed to implement the test strategy. These activities are planned in concert with
the development activities to coordinate milestones and resources.

• Software engineers have responsibility for implementing the planned activities.
They select the specific test cases necessary to achieve specific test coverage levels
and implement any software needed to apply the test cases to the software under
test.

The close relationship between developing software and testing it results in the test
activities being crafted with knowledge of the chosen development process. The
method engineer arranges the testing activities so that they are timely and have the
appropriate perspective for their position in the development process. This tutorial
considers test techniques and test process models.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, p. 439, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Business Case for Software Reuse: Reuse Metrics,
Economic Models, Organizational Issues, and Case

Studies

Jeffrey S. Poulin

Lockheed Martin Distribution Technologies
Owego, NY 13827

Jeffrey.Poulin@lmco.com
http://home.stny.rr.com/jeffreypoulin

Successfully introducing a reuse program into an organization requires many things,
such as proven processes, an organization for reuse, and management support.
However, management needs to understand the value of reuse before they will
allocate resources. Key to showing this value is a business case based on consistent,
realistic, and easy to understand metrics. I have found that combining realistic
assumptions with simple, easy-to-understand metrics often provides the incentive
needed to “sell” reuse to management.

The business case for reuse has two parts. First, consider how much effort you save
by reusing something rather than writing it yourself. Based on a lot of data, I have
found that development savings range from 50-100% of new development (depending
on the situation), with “typical” savings right around 80%. Reuse also avoids on-
going maintenance costs, which further adds to this savings.

Second, consider how much it costs to write a component for reuse. Although it
might cost from 0%-300% more to develop reusable components (again, depending
on the situation), data shows that the “typical” additional investment lies around 50%.

In short, the business case for reuse consists of avoiding 80% of the development
costs for reusing components (plus some additional maintenance savings) minus the
50% extra it cost to build the components in the first place. Using these simple
metrics, it is easy to show that if you have two related projects, it will pay to base
both of them on the same foundation of reusable components.

Even with conservative assumptions, the business case for reuse is overwhelming.
Combined with proven “best practices” such as for organizing your team and for
component management, metrics are critical to successfully rolling out reuse in any
organization.

Reference

Poulin, Jeffrey S. Measuring Software Reuse: Principles, Practices, and Economic Models.
Addison-Wesley (ISBN 0-201-63413-9), Reading, MA, 1997.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, p. 440, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Designing Software Product Lines with UML 2.0: From
Use Cases to Pattern-Based Software Architectures

Hassan Gomaa

Department of Information and Software Engineering
George Mason University, Fairfax, Virginia, USA

hgomaa@gmu.edu

A software product line consists of a family of software systems that have some
common functionality and some variable functionality. An important part of
developing a software product line is commonality/variability analysis, during which
the common and variable parts of the requirements, analysis, and design models are
determined. This tutorial describes a model-driven evolutionary development
approach for software product lines called PLUS (Product Line UML-based Software
Engineering).

The Evolutionary Software Product Line Engineering Process is a highly iterative
software process, which consists of two main phases. During Software Product line
Engineering, a product line multiple-view model, product line architecture, and
reusable components are developed. During Software Application Engineering, given
the features for the individual product line member, the application multiple-view
model and architecture are derived.

This tutorial addresses how to develop object-oriented requirements, analysis, and
design models of software product lines using the Unified Modeling Language
(UML) 2.0 notation. During requirements modeling, kernel, optional, and alternative
use cases are developed to define the software functional requirements of the system.
The feature model is then developed to capture the commonality and variability in
product line requirements, and how they relate to the use case model. During analysis,
static models are developed for defining kernel, optional, and variant classes and their
relationships. Dynamic models are developed in which statecharts define the state
dependent aspects of the product line and interaction models describe the dynamic
interaction between the objects that participate in each kernel, optional, and
alternative use case. The feature/class dependencies are then determined by
performing an impact analysis of the optional and alternative features. The
component-based software architecture for the product line is then developed, in
which the system is structured into distributed components. Architectural structure
patterns and communication patterns are used to help develop the software
architecture. Software applications, which are members of the software product line,
are developed by selecting the application features from the feature model and using
this to derive the application from the product line architecture and components The
tutorial is based on a book by the author, “Designing Software Product Lines with
UML: From Use Cases to Pattern-Based Software Architectures", Addison Wesley
Object-Oriented Technology Series, 2005.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 441 – 442, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Aspect-Oriented Software Development Beyond
Programming

Awais Rashid1, Alessandro Garcia1, and Ana Moreira2

1 Computing Department, Infolab21, Lancaster University,
Lancaster LA1 4WA, UK

{awais, garciaa}@comp.lancs.ac.uk
2 Departamento de Informática, Universidade Nova de Lisboa, 2829-516

Lisboa, Portugal
amm@di.fct.unl.pt

Software systems and the concerns addressed by them are becoming increasingly
complex hence posing new challenges to the mainstream software engineering
paradigms. The objectoriented paradigm is not sufficient to modularise crosscutting
concerns, such as persistence, distribution and error handling, because they naturally
crosscut the boundaries of other concerns. As a result, these broadly-scoped concerns
cannot be systematically reused and evolved. Aspect-oriented software development
(AOSD) [1] tackles the specific problem of managing crosscutting concerns
throughout the software development lifecycle. It supports a new abstraction – the
aspect – and new composition mechanisms to facilitate developers to modularise,
analyse and reason about crosscutting concerns in a system. Its potential benefits
include improved comprehensibility, reusability, evolvability and maintainability of
the system.

Although AOSD is founded on the concepts of aspect-oriented programming
(AOP) [4], AOSD is not just about programming. In fact, several aspect-oriented
techniques for preliminary development stages (collectively referred to as Early
Aspects approaches [2]), such as requirements engineering and architecture design,
have been proposed in order to provide systematic treatment of crosscutting concerns
throughout the software lifecycle and not just at the programming stage. Hence with
the emergence of AOSD techniques, reuse of crosscutting concerns is no longer
limited to the context of code artifacts.

In this context, the focus of this tutorial is on providing attendees with a sound
knowledge, rooted in concrete examples based on real-world scenarios, on how to
employ AOSD beyond the programming stage of the software development life cycle.
The tutorial covers how to use AOSD techniques to systematically treat crosscutting
concerns in a reusable fashion during requirements engineering, architecture design
and detailed design as well as the mapping between aspects at these stages. The
discussion is based on concrete methods, tools, techniques and notations drawn from
the state-of-the-art in Early Aspects, e.g., [3, 5, 6]. With a clear focus on reusable
composition, modelling, trade-off analysis and assessment methods, the tutorial
imparts an engineering ethos to be translated into day-to-day AOSD processes and
practices.

442 A. Rashid, A. Garcia, and A. Moreira

References

[1] AOSD, "Aspect-Oriented Software Development", http://aosd.net, 2006.
[2] E. L. A. Baniassad, et al., "Discovering Early Aspects", IEEE Software, 23(1), 2006.
[3] A. Garcia, et al., "Modularizing Design Patterns with Aspects: A Quantitative Study ",Proc.

AOSD Conf. 2005, ACM, pp. 3-14.
[4] G. Kiczales, et al., "Aspect-Oriented Programming", Proc. ECOOP 1997, pp. 220-242.
[5] A. Moreira, et al., "Multi-Dimensional Separation of Concerns in Requirements

Engineering", Proc. Requirements Engineering Conf. 2005, IEEE CS, pp. 285-296.
[6] A. Rashid, et al., "Modularisation and Composition of Aspectual Requirements",

Proc.AOSD Conf. 2003, ACM, pp. 11-20.

Author Index

Abrahamsson, Pekka 287
Ahn, Sangim 427
Almeida, Isabella 142
Alvaro, Alexandre 43
Alves, Vander 231
Astudillo, Hernán 386
Atkinson, Colin 298
Ayala, Claudia 1

Barros, José L. 419
Bastarrica, Cecilia Maŕıa 403
Becker, Karin 142, 395
Blois, Ana Paula 142
Borba, Paulo 231
Borovansky, Peter 423
Brunet, Joël 390
Bunse, Christian 16

Carvalho Cavalcanti, Ana Paula 43
Cavalcanti, Gustavo 415, 432
Cechticky, V. 312
Chae, Heung Seok 115
Chong, Kiwon 427
Colnet, Dominique 203
Conradi, Reidar 16

de Lucena, Carlos J.P. 231
de Oliveira, Regiane Felipe 395
Deelstra, Sybren 101
Dias Jr., Jorge 415, 432

Egli, M. 312
Eler, Medeiros Marcelo 411
Elias, Glêdson 415, 432

Favaro, John 437
Favre, Liliana 326
Feng, Yankui 260
Fleurquin, Régis 340
Frakes, Bill 437
Frakes, William B. 184
Franch, Xavier 1
Fuentes, José M. 386

Ganesan, Dharmalingam 368
Garcia, Alessandro 231, 441

Garcia, Vinicius Cardoso 43
George, Bart 340
Girardi, Rosario 399
Gomaa, Hassan 58, 440

Hitschfeld-Kahler, Nancy 403
Hoekstra, Piter 101
Hummel, Oliver 298

Jansen, Mauro 399
Jiao, Wenpin 29

Kagino, Masanori 368
Kakarontzas, George 273
Kang, Kyo Chul 156
Kerridge, Jon 260
Kim, Byungkil 156
Kim, Moonzoo 156
Kojarski, Sergei 246
Kolb, Ronny 368
Kulczycki, Gregory 184
Kulesza, Uirá 231
Kushmerick, Nicholas 217

Lee, Jae Joon 156
Lee, Yuqin 127
Li, Jingyue 16
Liu, Xiaodong 260
Llorens, Juan 386
Lopes, Luiz Gustavo 170
Lorenz, David H. 246
Lucrédio, Daniel 43

Maia, Natanael 395
Männistö, Tomi 73
Marpons, Guillem 203
Marqués, José M. 419
Martinez, Liliana 326
Mascena, Jorge Cláudio Cordeiro

Pires 43
Masiero, Cesar Paulo 411
McCarey, Frank 217
McGregor, John D. 438
Mei, Hong 29
Merizen, Frederic 203

444 Author Index

Miranda, Sindolfo 432
Miranda Filho, Sindolfo 415
Moon, Mikyeong 115
Moreau, Pierre-Etienne 423
Moreira, Ana 441
Moser, Raimund 287
Murta, Leonardo 170
Muthig, Dirk 368
Myllärniemi, Varvana 73

Negócio, Yuri 415, 432

Ó Cinnéide, Mel 217

Paller, Gábor 354
Pasetti, A. 312
Peng, Xin 87
Poulin, Jeffrey S. 439
Prieto-Diaz, Ruben 386

Raatikainen, Mikko 73
Rashid, Awais 441
Rohlik, O. 312
Romero de Lemos Meira, Silvio 43
Rossel, Pedro O. 403

Sadou, Salah 340
Saleh, Mazen 58
Santana de Almeida, Eduardo 43
Saxena, Charu 184
Schuenck, Michael 415, 432

Semmak, Farida 390
Seo, Chang-woo 156
Sillitti, Alberto 287
Sinnema, Marco 101
Š́ıpka, Miloslav 407
Slyngstad, Odd Petter N. 16
Spagnoli, Luciana 142
Stamelos, Ioannis 273
Succi, Giancarlo 287

Teranishi, Hideharu 368
Terra Bacelo Blois, Ana Paula 395
Tolvanen, Juha-Pekka 436
Torchiano, Marco 16

Vardanega, T. 312
Vittek, Marian 423
Voss, Markus 382
Vranić, Valentino 407

Werner, Cláudia 142, 170, 395
Wu, Yijian 87

Xue, Yunjiao 87

Yang, Chuanyao 127
Yeom, Keunhyuk 115
Yu, Seung-lyeol 156

Zhao, Wenyun 87, 127
Zhu, Chongxiang 127

	Frontmatter
	COTS Selection, Integration
	A Goal-Oriented Strategy for Supporting Commercial Off-the-Shelf Components Selection
	A State-of-the-Practice Survey of Off-the-Shelf Component-Based Development Processes
	Automating Integration of Heterogeneous COTS Components

	Product Lines, Domain Analysis, Variability
	The Domain Analysis Concept Revisited: A Practical Approach
	Feature Driven Dynamic Customization of Software Product Lines
	Inter-organisational Approach in Rapid Software Product Family Development --- A Case Study
	Ontology-Based Feature Modeling and Application-Oriented Tailoring
	The COVAMOF Derivation Process
	A Metamodel Approach to Architecture Variability in a Product Line
	An Approach to Managing Feature Dependencies for Product Releasing in Software Product Lines
	Adaptation and Composition Within Component Architecture Specification

	Reengineering Maintanance
	Re-engineering a Credit Card Authorization System for Maintainability and Reusability of Components -- {\itshape A Case Study }
	Odyssey-CCS: A Change Control System Tailored to Software Reuse
	Case Study of a Method for Reengineering Procedural Systems into OO Systems

	Programming Languages and Retrieval
	Reconciling Subtyping and Code Reuse in Object-Oriented Languages: Using {\itshape inherit} and {\itshape insert} in SmartEiffel, the GNU Eiffel Compiler
	Recommending Library Methods: An Evaluation of the Vector Space Model (VSM) and Latent Semantic Indexing (LSI)

	Aspect-Oriented Software Development
	Improving Extensibility of Object-Oriented Frameworks with Aspect-Oriented Programming
	Comparing White-Box, Black-Box, and Glass-Box Composition of Aspect Mechanisms
	Achieving Smooth Component Integration with Generative Aspects and Component Adaptation

	Approaches and Models
	A Tactic-Driven Process for Developing Reusable Components
	Does Refactoring Improve Reusability?
	Using the Web as a Reuse Repository

	Components
	A UML2 Profile for Reusable and Verifiable Software Components for Real-Time Applications
	Formalizing MDA Components
	A Component-Oriented Substitution Model
	Building Reflective Mobile Middleware Framework on Top of the OSGi Platform
	Goal-Oriented Performance Analysis of Reusable Software Components

	Short Papers
	Establishing Extra Organizational Reuse Capabilities
	Incremental Software Reuse
	Variability in Goal-Oriented Domain Requirements
	Variability Modeling in a Component-Based Domain Engineering Process
	GENMADEM: A Methodology for Generative Multi-agent Domain Engineering
	Product Line Architecture for a Family of Meshing Tools
	Binding Time Based Concept Instantiation in Feature Modeling
	Aspects as Components
	Improving Reuse of Off-the-Shelf Components with Shared, Distributed Component Repository Systems
	Support to Development-with-Reuse in Very Small Software Developing Companies
	A Simple Generic Library for C
	Eliciting Potential Requirements with Feature-Oriented Gap Analysis
	X-ARM: A Step Towards Reuse of Commercial and Open Source Components

	Tutorials
	Implementing Domain-Specific Modeling Languages and Generators
	Metrics and Strategy for Reuse Planning and Management
	Building Reusable Testing Assets for a Software Product Line
	The Business Case for Software Reuse: Reuse Metrics, Economic Models, Organizational Issues, and Case Studies
	Designing Software Product Lines with UML 2.0: From Use Cases to Pattern-Based Software Architectures
	Aspect-Oriented Software Development Beyond Programming

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

